Fast fragments : the development of a parallel effective fragment potential method

Copyright 2004 Wiley Periodicals, Inc.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 25(2004), 15 vom: 30. Nov., Seite 1926-35
1. Verfasser: Netzloff, Heather M (VerfasserIn)
Weitere Verfasser: Gordon, Mark S
Format: Aufsatz
Sprache:English
Veröffentlicht: 2004
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM150635257
003 DE-627
005 20231223054250.0
007 tu
008 231223s2004 xx ||||| 00| ||eng c
028 5 2 |a pubmed24n0502.xml 
035 |a (DE-627)NLM150635257 
035 |a (NLM)15389744 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Netzloff, Heather M  |e verfasserin  |4 aut 
245 1 0 |a Fast fragments  |b the development of a parallel effective fragment potential method 
264 1 |c 2004 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 22.11.2004 
500 |a Date Revised 29.09.2004 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Copyright 2004 Wiley Periodicals, Inc. 
520 |a The Effective Fragment Potential (EFP) method for solvation decreases the cost of a fully quantum mechanical calculation by dividing a chemical system into an ab initio region that contains the solute plus some number of solvent molecules, if desired, and an "effective fragment" region that contains the remaining solvent molecules. Interactions introduced with this fragment region (for example, Coulomb and polarization interactions) are added as one-electron terms to the total system Hamiltonian. As larger systems and dynamics are just starting to be studied with the EFP method, more needs to be done to decrease the calculation time of the method. This article considers parallelization of both the EFP fragment-fragment and mixed quantum mechanics (QM)-EFP interaction energy and gradient computation within the GAMESS suite of programs. The iteratively self-consistent polarization term is treated with a new algorithm that makes use of nonblocking communication to obtain better scalability. Results show that reasonable speedup is achieved with a variety of sizes of water clusters and number of processors 
650 4 |a Journal Article 
700 1 |a Gordon, Mark S  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 25(2004), 15 vom: 30. Nov., Seite 1926-35  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnns 
773 1 8 |g volume:25  |g year:2004  |g number:15  |g day:30  |g month:11  |g pages:1926-35 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 25  |j 2004  |e 15  |b 30  |c 11  |h 1926-35