Flow electrification in nonaqueous colloidal suspensions, studied with video microscopy

Flow electrification in nonaqueous suspensions has been scarcely reported in the literature but can significantly affect colloidal stability and (phase) behavior, perhaps even without being recognized. We have observed it in shear flow experiments on concentrated binary suspensions of hydrophobized...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 20(2004), 20 vom: 28. Sept., Seite 8460-7
1. Verfasser: Tolpekin, V A (VerfasserIn)
Weitere Verfasser: van den Ende, D, Duits, M H G, Mellema, J
Format: Aufsatz
Sprache:English
Veröffentlicht: 2004
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM150537999
003 DE-627
005 20231223054052.0
007 tu
008 231223s2004 xx ||||| 00| ||eng c
028 5 2 |a pubmed24n0502.xml 
035 |a (DE-627)NLM150537999 
035 |a (NLM)15379461 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Tolpekin, V A  |e verfasserin  |4 aut 
245 1 0 |a Flow electrification in nonaqueous colloidal suspensions, studied with video microscopy 
264 1 |c 2004 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 21.08.2006 
500 |a Date Revised 21.09.2004 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Flow electrification in nonaqueous suspensions has been scarcely reported in the literature but can significantly affect colloidal stability and (phase) behavior, perhaps even without being recognized. We have observed it in shear flow experiments on concentrated binary suspensions of hydrophobized silica particles in chloroform. In this low-polarity solvent, electrical charges on the large-particles' surfaces manifest themselves via long-ranged forces, because hardly any screening can take place through counterions. By shearing the suspension for a prolonged time, we could demonstrate that the effective interactions between the large particles change from weakly attractive (due to the small particles) to strongly repulsive (due to acquired Coulomb interactions). One of the conditions required for flow electrification was the presence of a glass surface in the shear cell. A spectacular manifestation of the phenomenon was observed with confocal video microscopy. First, the formation of large-particle aggregates was seen, while subsequently (over a long shearing time) the aggregates disintegrated into small entities, mostly primary particles. The spatial distribution of these entities in the quiescent state after stopping the flow showed evidence for acquired long-range repulsion. The occurrence of flow electrification was further corroborated by control experiments, where no flow was imposed, antistatic agent was added, or the glass bottom was coated with a conducting (indium tin oxide, ITO) layer: here, the aggregates kept growing until they became very large. To further diagnose the phenomenon, we have also done experiments in which an external electric field was applied (via the ITO layer) to an aggregated suspension. When the lower electrode was given the lowest potential, the aggregates were found to move away from the bottom and disintegrate. The qualitative similarity hereof with the flow electrification experiment suggests that in the latter, the glass acquired negative charges. After prolonged application of an external electric field, we observed segregation into regions enriched in large particles and regions completely depleted of them. In the quiescent fluid these regions exist as isolated units, but in shear flow they merge into bands, a behavior which resembles shear banding 
650 4 |a Journal Article 
700 1 |a van den Ende, D  |e verfasserin  |4 aut 
700 1 |a Duits, M H G  |e verfasserin  |4 aut 
700 1 |a Mellema, J  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Langmuir : the ACS journal of surfaces and colloids  |d 1992  |g 20(2004), 20 vom: 28. Sept., Seite 8460-7  |w (DE-627)NLM098181009  |x 1520-5827  |7 nnns 
773 1 8 |g volume:20  |g year:2004  |g number:20  |g day:28  |g month:09  |g pages:8460-7 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_350 
912 |a GBV_ILN_721 
951 |a AR 
952 |d 20  |j 2004  |e 20  |b 28  |c 09  |h 8460-7