Analysis of planar shapes using geodesic paths on shape spaces

For analyzing shapes of planar, closed curves, we propose differential geometric representations of curves using their direction functions and curvature functions. Shapes are represented as elements of infinite-dimensional spaces and their pairwise differences are quantified using the lengths of geo...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on pattern analysis and machine intelligence. - 1998. - 26(2004), 3 vom: 24. März, Seite 372-83
Auteur principal: Klassen, Eric (Auteur)
Autres auteurs: Srivastava, Anuj, Mio, Washington, Joshi, Shantanu H
Format: Article
Langue:English
Publié: 2004
Accès à la collection:IEEE transactions on pattern analysis and machine intelligence
Sujets:Comparative Study Evaluation Study Journal Article Research Support, U.S. Gov't, Non-P.H.S. Validation Study
LEADER 01000caa a22002652 4500
001 NLM15051297X
003 DE-627
005 20250205202606.0
007 tu
008 231223s2004 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n0502.xml 
035 |a (DE-627)NLM15051297X 
035 |a (NLM)15376883 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Klassen, Eric  |e verfasserin  |4 aut 
245 1 0 |a Analysis of planar shapes using geodesic paths on shape spaces 
264 1 |c 2004 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 12.10.2004 
500 |a Date Revised 10.12.2019 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a For analyzing shapes of planar, closed curves, we propose differential geometric representations of curves using their direction functions and curvature functions. Shapes are represented as elements of infinite-dimensional spaces and their pairwise differences are quantified using the lengths of geodesics connecting them on these spaces. We use a Fourier basis to represent tangents to the shape spaces and then use a gradient-based shooting method to solve for the tangent that connects any two shapes via a geodesic. Using the Surrey fish database, we demonstrate some applications of this approach: 1) interpolation and extrapolations of shape changes, 2) clustering of objects according to their shapes, 3) statistics on shape spaces, and 4) Bayesian extraction of shapes in low-quality images 
650 4 |a Comparative Study 
650 4 |a Evaluation Study 
650 4 |a Journal Article 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
650 4 |a Validation Study 
700 1 |a Srivastava, Anuj  |e verfasserin  |4 aut 
700 1 |a Mio, Washington  |e verfasserin  |4 aut 
700 1 |a Joshi, Shantanu H  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1998  |g 26(2004), 3 vom: 24. März, Seite 372-83  |w (DE-627)NLM098212257  |x 0162-8828  |7 nnns 
773 1 8 |g volume:26  |g year:2004  |g number:3  |g day:24  |g month:03  |g pages:372-83 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 26  |j 2004  |e 3  |b 24  |c 03  |h 372-83