A computational model for periodic pattern perception based on frieze and wallpaper groups

We present a computational model for periodic pattern perception based on the mathematical theory of crystallographic groups. In each N-dimensional Euclidean space, a finite number of symmetry groups can characterize the structures of an infinite variety of periodic patterns. In 2D space, there are...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 26(2004), 3 vom: 24. März, Seite 354-71
1. Verfasser: Liu, Yanxi (VerfasserIn)
Weitere Verfasser: Collins, Robert T, Tsin, Yanghai
Format: Aufsatz
Sprache:English
Veröffentlicht: 2004
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Comparative Study Evaluation Study Journal Article Research Support, U.S. Gov't, Non-P.H.S. Validation Study
LEADER 01000naa a22002652 4500
001 NLM150512953
003 DE-627
005 20231223054020.0
007 tu
008 231223s2004 xx ||||| 00| ||eng c
028 5 2 |a pubmed24n0502.xml 
035 |a (DE-627)NLM150512953 
035 |a (NLM)15376882 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Liu, Yanxi  |e verfasserin  |4 aut 
245 1 2 |a A computational model for periodic pattern perception based on frieze and wallpaper groups 
264 1 |c 2004 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 12.10.2004 
500 |a Date Revised 10.12.2019 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a We present a computational model for periodic pattern perception based on the mathematical theory of crystallographic groups. In each N-dimensional Euclidean space, a finite number of symmetry groups can characterize the structures of an infinite variety of periodic patterns. In 2D space, there are seven frieze groups describing monochrome patterns that repeat along one direction and 17 wallpaper groups for patterns that repeat along two linearly independent directions to tile the plane. We develop a set of computer algorithms that "understand" a given periodic pattern by automatically finding its underlying lattice, identifying its symmetry group, and extracting its representative motifs. We also extend this computational model for near-periodic patterns using geometric AIC. Applications of such a computational model include pattern indexing, texture synthesis, image compression, and gait analysis 
650 4 |a Comparative Study 
650 4 |a Evaluation Study 
650 4 |a Journal Article 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
650 4 |a Validation Study 
700 1 |a Collins, Robert T  |e verfasserin  |4 aut 
700 1 |a Tsin, Yanghai  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 26(2004), 3 vom: 24. März, Seite 354-71  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:26  |g year:2004  |g number:3  |g day:24  |g month:03  |g pages:354-71 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 26  |j 2004  |e 3  |b 24  |c 03  |h 354-71