The writer independent online handwriting recognition system frog on hand and cluster generative statistical dynamic time warping

In this paper, we give a comprehensive description of our writer-independent online handwriting recognition system frog on hand. The focus of this work concerns the presentation of the classification/training approach, which we call cluster generative statistical dynamic time warping (CSDTW). CSDTW...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 26(2004), 3 vom: 24. März, Seite 299-310
Auteur principal: Bahlmann, Claus (Auteur)
Autres auteurs: Burkhardt, Hans
Format: Article
Langue:English
Publié: 2004
Accès à la collection:IEEE transactions on pattern analysis and machine intelligence
Sujets:Comparative Study Evaluation Study Journal Article Validation Study
LEADER 01000caa a22002652c 4500
001 NLM150512910
003 DE-627
005 20250205202605.0
007 tu
008 231223s2004 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n0502.xml 
035 |a (DE-627)NLM150512910 
035 |a (NLM)15376878 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Bahlmann, Claus  |e verfasserin  |4 aut 
245 1 4 |a The writer independent online handwriting recognition system frog on hand and cluster generative statistical dynamic time warping 
264 1 |c 2004 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 12.10.2004 
500 |a Date Revised 10.12.2019 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a In this paper, we give a comprehensive description of our writer-independent online handwriting recognition system frog on hand. The focus of this work concerns the presentation of the classification/training approach, which we call cluster generative statistical dynamic time warping (CSDTW). CSDTW is a general, scalable, HMM-based method for variable-sized, sequential data that holistically combines cluster analysis and statistical sequence modeling. It can handle general classification problems that rely on this sequential type of data, e.g., speech recognition, genome processing, robotics, etc. Contrary to previous attempts, clustering and statistical sequence modeling are embedded in a single feature space and use a closely related distance measure. We show character recognition experiments of frog on hand using CSDTW on the UNIPEN online handwriting database. The recognition accuracy is significantly higher than reported results of other handwriting recognition systems. Finally, we describe the real-time implementation of frog on hand on a Linux Compaq iPAQ embedded device 
650 4 |a Comparative Study 
650 4 |a Evaluation Study 
650 4 |a Journal Article 
650 4 |a Validation Study 
700 1 |a Burkhardt, Hans  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 26(2004), 3 vom: 24. März, Seite 299-310  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:26  |g year:2004  |g number:3  |g day:24  |g month:03  |g pages:299-310 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 26  |j 2004  |e 3  |b 24  |c 03  |h 299-310