Optimal context quantization in lossless compression of image data sequences

In image compression context-based entropy coding is commonly used. A critical issue to the performance of context-based image coding is how to resolve the conflict of a desire for large templates to model high-order statistic dependency of the pixels and the problem of context dilution due to insuf...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 13(2004), 4 vom: 10. Apr., Seite 509-17
1. Verfasser: Forchhammer, Søren (VerfasserIn)
Weitere Verfasser: Wu, Xiaolin, Andersen, Jakob Dahl
Format: Aufsatz
Sprache:English
Veröffentlicht: 2004
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Comparative Study Evaluation Study Journal Article Validation Study
LEADER 01000naa a22002652 4500
001 NLM150510284
003 DE-627
005 20231223054017.0
007 tu
008 231223s2004 xx ||||| 00| ||eng c
028 5 2 |a pubmed24n0502.xml 
035 |a (DE-627)NLM150510284 
035 |a (NLM)15376585 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Forchhammer, Søren  |e verfasserin  |4 aut 
245 1 0 |a Optimal context quantization in lossless compression of image data sequences 
264 1 |c 2004 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 12.10.2004 
500 |a Date Revised 10.12.2019 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a In image compression context-based entropy coding is commonly used. A critical issue to the performance of context-based image coding is how to resolve the conflict of a desire for large templates to model high-order statistic dependency of the pixels and the problem of context dilution due to insufficient sample statistics of a given input image. We consider the problem of finding the optimal quantizer Q that quantizes the K-dimensional causal context Ct = (Xt-t1,Xt-t2,...,X t-tK) of a source symbol Xt into one of a set of conditioning states. The optimality of context quantization is defined to be the minimum static or minimum adaptive code length of given a data set. For a binary source alphabet an optimal context quantizer can be computed exactly by a fast dynamic programming algorithm. Faster approximation solutions are also proposed. In case of m-ary source alphabet a random variable can be decomposed into a sequence of binary decisions, each of which is coded using optimal context quantization designed for the corresponding binary random variable. This optimized coding scheme is applied to digital maps and alpha-plane sequences. The proposed optimal context quantization technique can also be used to establish a lower bound on the achievable code length, and hence is a useful tool to evaluate the performance of existing heuristic context quantizers 
650 4 |a Comparative Study 
650 4 |a Evaluation Study 
650 4 |a Journal Article 
650 4 |a Validation Study 
700 1 |a Wu, Xiaolin  |e verfasserin  |4 aut 
700 1 |a Andersen, Jakob Dahl  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 13(2004), 4 vom: 10. Apr., Seite 509-17  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:13  |g year:2004  |g number:4  |g day:10  |g month:04  |g pages:509-17 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 13  |j 2004  |e 4  |b 10  |c 04  |h 509-17