Prediction of pKa shifts in proteins using a combination of molecular mechanical and continuum solvent calculations

Copyright 2004 Wiley Periodicals, Inc.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 25(2004), 15 vom: 30. Nov., Seite 1865-72
1. Verfasser: Kuhn, Bernd (VerfasserIn)
Weitere Verfasser: Kollman, Peter A, Stahl, Martin
Format: Aufsatz
Sprache:English
Veröffentlicht: 2004
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article Proteins Solvents
LEADER 01000naa a22002652 4500
001 NLM15050697X
003 DE-627
005 20231223054013.0
007 tu
008 231223s2004 xx ||||| 00| ||eng c
028 5 2 |a pubmed24n0502.xml 
035 |a (DE-627)NLM15050697X 
035 |a (NLM)15376253 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Kuhn, Bernd  |e verfasserin  |4 aut 
245 1 0 |a Prediction of pKa shifts in proteins using a combination of molecular mechanical and continuum solvent calculations 
264 1 |c 2004 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 22.11.2004 
500 |a Date Revised 21.11.2008 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a Copyright 2004 Wiley Periodicals, Inc. 
520 |a The prediction of pKa shifts of ionizable groups in proteins is of great relevance for a number of important biological phenomena. We present an implementation of the MM-GBSA approach, which combines molecular mechanical (MM) and generalized Born (GB) continuum solvent energy terms, to the calculation of pKa values of a panel of nine proteins, including 69 individual comparisons with experiment. While applied so far mainly to the calculation of biomolecular binding free energies, we show that this method can also be used for the estimation of protein pKa shifts, with an accuracy around 1 pKa unit, even for strongly shifted residues. Our analysis reveals that the nonelectrostatic terms that are part of the MM-GBSA free energy expression are important contributors to improved prediction accuracy. This suggests that most of the previous approaches that focus only on electrostatic interactions could be improved by adding other nonpolar energy terms to their free energy expression. Interestingly, our method yields best accuracy at protein dielectric constants of epsilonint = 2-4, which is in contrast to previous approaches that peak at higher epsilonint > or = 8. An important component of our procedure is an intermediate minimization step of each protonation state involving different rotamers and tautomers as a way to explicitly model protein relaxation upon (de)protonation 
650 4 |a Journal Article 
650 7 |a Proteins  |2 NLM 
650 7 |a Solvents  |2 NLM 
700 1 |a Kollman, Peter A  |e verfasserin  |4 aut 
700 1 |a Stahl, Martin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 25(2004), 15 vom: 30. Nov., Seite 1865-72  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnns 
773 1 8 |g volume:25  |g year:2004  |g number:15  |g day:30  |g month:11  |g pages:1865-72 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 25  |j 2004  |e 15  |b 30  |c 11  |h 1865-72