|
|
|
|
LEADER |
01000caa a22002652c 4500 |
001 |
NLM150445660 |
003 |
DE-627 |
005 |
20250205201232.0 |
007 |
tu |
008 |
231223s2004 xx ||||| 00| ||eng c |
028 |
5 |
2 |
|a pubmed25n0502.xml
|
035 |
|
|
|a (DE-627)NLM150445660
|
035 |
|
|
|a (NLM)15369284
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Lissens, G
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Wet oxidation treatment of organic household waste enriched with wheat straw for simultaneous saccharification and fermentation into ethanol
|
264 |
|
1 |
|c 2004
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ohne Hilfsmittel zu benutzen
|b n
|2 rdamedia
|
338 |
|
|
|a Band
|b nc
|2 rdacarrier
|
500 |
|
|
|a Date Completed 28.09.2004
|
500 |
|
|
|a Date Revised 21.11.2013
|
500 |
|
|
|a published: Print
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a Organic municipal solid waste enriched with wheat straw was subjected to wet-oxidation as a pre-treatment for subsequent enzymatic conversion and fermentation into bio-ethanol. The effect of temperature (185-195 degrees C), oxygen pressure (3-12 bar) and sodium carbonate (0-2 g l(-1) ) addition on enzymatic cellulose and hemicellulose convertibility was studied at a constant wet oxidation retention time of 10 minutes. An enzyme convertibility assay at high enzyme loading (25 filter paper unit (FPU) g(-1) dry solids (DS) added) showed that up to 78% of the cellulose and up to 68% of the hemicellulose in the treated waste could be converted into respectively hexose and pentose sugars compared to 46% for cellulose and 36% for hemicellulose in the raw waste. For all wet oxidation conditions tested, total carbohydrate recoveries were high (> 89%) and 44-66% of the original lignin could be converted into non-toxic carboxylic acids mainly (2.2-4.5 % on DS basis). Simultaneous saccharification and fermentation (SSF) of the treated waste at 10% DS by Saccharomyces cerevisae yielded average ethanol concentrations of 16.5 to 22 g 1(-1) for enzyme loadings of 5 and 25 FPU g(-1) DS, respectively. The cellulose to ethanol conversion efficiency during SSF was 50, 62, 65 and 70% for a total enzyme loading of 5, 10, 15 and 25 FPU g(-1) DS, respectively. Hence, this study shows that wet oxidation is a suitable pre-treatment for the conversion of organic waste carbohydrates into ethanol and that compatible conversion yields (60-65%) can be achieved at moderate enzyme loadings
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
7 |
|a Carbohydrates
|2 NLM
|
650 |
|
7 |
|a Solvents
|2 NLM
|
650 |
|
7 |
|a Ethanol
|2 NLM
|
650 |
|
7 |
|a 3K9958V90M
|2 NLM
|
650 |
|
7 |
|a Oxygen
|2 NLM
|
650 |
|
7 |
|a S88TT14065
|2 NLM
|
700 |
1 |
|
|a Klinke, H
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Verstraete, W
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ahring, B
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Thomsen, A B
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Environmental technology
|d 1993
|g 25(2004), 6 vom: 31. Juni, Seite 647-55
|w (DE-627)NLM098202545
|x 1479-487X
|7 nnas
|
773 |
1 |
8 |
|g volume:25
|g year:2004
|g number:6
|g day:31
|g month:06
|g pages:647-55
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 25
|j 2004
|e 6
|b 31
|c 06
|h 647-55
|