Analysis of the weighting exponent in the FCM

The fuzzy c-means (FCM) algorithm is one of the most frequently used clustering algorithms. The weighting exponent m is a parameter that greatly influences the performance of the FCM. But there has been no theoretical basis for selecting the proper weighting exponent in the literature. In this paper...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society. - 1997. - 34(2004), 1 vom: 13. Feb., Seite 634-9
1. Verfasser: Yu, Jian (VerfasserIn)
Weitere Verfasser: Cheng, Qiansheng, Huang, Houkuan
Format: Aufsatz
Sprache:English
Veröffentlicht: 2004
Zugriff auf das übergeordnete Werk:IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:The fuzzy c-means (FCM) algorithm is one of the most frequently used clustering algorithms. The weighting exponent m is a parameter that greatly influences the performance of the FCM. But there has been no theoretical basis for selecting the proper weighting exponent in the literature. In this paper, we develop a new theoretical approach to selecting the weighting exponent in the FCM. Based on this approach, we reveal the relation between the stability of the fixed points of the FCM and the data set itself. This relation provides the theoretical basis for selecting the weighting exponent in the FCM. The numerical experiments verify the effectiveness of our theoretical conclusion
Beschreibung:Date Completed 15.10.2004
Date Revised 08.11.2019
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:1083-4419