Hybridized particle swarm algorithm for adaptive structure training of multilayer feed-forward neural network : QSAR studies of bioactivity of organic compounds

The multilayer feed-forward ANN is an important modeling technique used in QSAR studying. The training of ANN is usually carried out only to optimize the weights of the neural network and without paying attention to the network topology. Some other strategies used to train ANN are, first, to discove...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 25(2004), 14 vom: 15. Nov., Seite 1726-35
1. Verfasser: Shen, Qi (VerfasserIn)
Weitere Verfasser: Jiang, Jian-Hui, Jiao, Chen-Xu, Lin, Wei-Qi, Shen, Guo-Li, Yu, Ru-Qin
Format: Aufsatz
Sprache:English
Veröffentlicht: 2004
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM150376952
003 DE-627
005 20231223053729.0
007 tu
008 231223s2004 xx ||||| 00| ||eng c
028 5 2 |a pubmed24n0501.xml 
035 |a (DE-627)NLM150376952 
035 |a (NLM)15362129 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Shen, Qi  |e verfasserin  |4 aut 
245 1 0 |a Hybridized particle swarm algorithm for adaptive structure training of multilayer feed-forward neural network  |b QSAR studies of bioactivity of organic compounds 
264 1 |c 2004 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 02.11.2004 
500 |a Date Revised 13.09.2004 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a The multilayer feed-forward ANN is an important modeling technique used in QSAR studying. The training of ANN is usually carried out only to optimize the weights of the neural network and without paying attention to the network topology. Some other strategies used to train ANN are, first, to discover an optimum structure of the network, and then to find weights for an already defined structure. These methods tend to converge to local optima, and may also lead to overfitting. In this article, a hybridized particle swarm optimization (PSO) approach was applied to the neural network structure training (HPSONN). The continuous version of PSO was used for the weight training of ANN, and the modified discrete PSO was applied to find appropriate the network architecture. The network structure and connectivity are trained simultaneously. The two versions of PSO can jointly search the global optimal ANN architecture and weights. A new objective function is formulated to determine the appropriate network architecture and optimum value of the weights. The proposed HPSONN algorithm was used to predict carcinogenic potency of aromatic amines and biological activity of a series of distamycin and distamycin-like derivatives. The results were compared to those obtained by PSO and GA training in which the network architecture was kept fixed. The comparison demonstrated that the HPSONN is a useful tool for training ANN, which converges quickly towards the optimal position, and can avoid overfitting in some extent 
650 4 |a Journal Article 
700 1 |a Jiang, Jian-Hui  |e verfasserin  |4 aut 
700 1 |a Jiao, Chen-Xu  |e verfasserin  |4 aut 
700 1 |a Lin, Wei-Qi  |e verfasserin  |4 aut 
700 1 |a Shen, Guo-Li  |e verfasserin  |4 aut 
700 1 |a Yu, Ru-Qin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 25(2004), 14 vom: 15. Nov., Seite 1726-35  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnns 
773 1 8 |g volume:25  |g year:2004  |g number:14  |g day:15  |g month:11  |g pages:1726-35 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 25  |j 2004  |e 14  |b 15  |c 11  |h 1726-35