Efficient implementation of accurate geometric transformations for 2-D and 3-D image processing
This paper proposes the use of a polynomial interpolator structure (based on Horner's scheme) which is efficiently realizable in hardware, for high-quality geometric transformation of two- and three-dimensional images. Polynomial-based interpolators such as cubic B-splines and optimal interpola...
Veröffentlicht in: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 13(2004), 8 vom: 01. Aug., Seite 1060-5 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , |
Format: | Aufsatz |
Sprache: | English |
Veröffentlicht: |
2004
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society |
Schlagworte: | Comparative Study Evaluation Study Journal Article Research Support, Non-U.S. Gov't Validation Study |
Zusammenfassung: | This paper proposes the use of a polynomial interpolator structure (based on Horner's scheme) which is efficiently realizable in hardware, for high-quality geometric transformation of two- and three-dimensional images. Polynomial-based interpolators such as cubic B-splines and optimal interpolators of shortest support are shown to be exactly implementable in the Horner structure framework. This structure suggests a hardware/software partition which can lead to efficient implementations for multidimensional interpolation |
---|---|
Beschreibung: | Date Completed 14.09.2004 Date Revised 10.12.2019 published: Print Citation Status MEDLINE |
ISSN: | 1941-0042 |