Efficient implementation of accurate geometric transformations for 2-D and 3-D image processing

This paper proposes the use of a polynomial interpolator structure (based on Horner's scheme) which is efficiently realizable in hardware, for high-quality geometric transformation of two- and three-dimensional images. Polynomial-based interpolators such as cubic B-splines and optimal interpola...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 13(2004), 8 vom: 01. Aug., Seite 1060-5
1. Verfasser: Dooley, Saul R (VerfasserIn)
Weitere Verfasser: Stewart, Robert W, Durrani, Tariq S, Setarehdan, S Kamal, Soraghan, John J
Format: Aufsatz
Sprache:English
Veröffentlicht: 2004
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Comparative Study Evaluation Study Journal Article Research Support, Non-U.S. Gov't Validation Study
Beschreibung
Zusammenfassung:This paper proposes the use of a polynomial interpolator structure (based on Horner's scheme) which is efficiently realizable in hardware, for high-quality geometric transformation of two- and three-dimensional images. Polynomial-based interpolators such as cubic B-splines and optimal interpolators of shortest support are shown to be exactly implementable in the Horner structure framework. This structure suggests a hardware/software partition which can lead to efficient implementations for multidimensional interpolation
Beschreibung:Date Completed 14.09.2004
Date Revised 10.12.2019
published: Print
Citation Status MEDLINE
ISSN:1941-0042