Development of a new methodology to study drop shape and surface tension in electric fields
Development of a new methodology for the study of both shape and surface tension of conducting drops in an electric field is presented. This methodology, called axisymmetric drop shape analysis-electric fields (ADSA-EF), generates numerical drop profiles in an electrostatic field, for a given surfac...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1992. - 20(2004), 18 vom: 31. Aug., Seite 7589-97 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , |
Format: | Aufsatz |
Sprache: | English |
Veröffentlicht: |
2004
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article |
Zusammenfassung: | Development of a new methodology for the study of both shape and surface tension of conducting drops in an electric field is presented. This methodology, called axisymmetric drop shape analysis-electric fields (ADSA-EF), generates numerical drop profiles in an electrostatic field, for a given surface tension. Then, it calculates the true value of the surface tension by matching theoretical profiles to the shape of experimental drops, using the surface tension as an adjustable parameter. ADSA-EF can be employed to simulate and study drop shapes in the electric field and to determine its effect on liquid surface tension. The method can also be used to measure surface tension in microgravity, where current drop-shape techniques are not applicable. The axisymmetric shape of the drop is the only assumption made in the development of ADSA-EF. The new scheme is applicable when both gravity and electrostatic forces are present. Preliminary measurements using ADSA-EF suggest that the surface tension of water increases by about 2% when an electric field with the magnitude of 10(6) V/m is applied |
---|---|
Beschreibung: | Date Completed 10.03.2006 Date Revised 24.08.2004 published: Print Citation Status PubMed-not-MEDLINE |
ISSN: | 1520-5827 |