Electrochemical quartz crystal nanobalance study of the adsorption/displacement phenomena of proteins and lipids on Pt

The electrochemical quartz crystal nanobalance (EQCN) was used to measure the adsorption behavior of a series of lipids (stearate, oleate, linoleate, and gamma-linolenate) on a Pt surface from a phosphate buffer pH 7.0 solution at 295 K and to investigate their adsorption/displacement behavior with...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 20(2004), 18 vom: 31. Aug., Seite 7547-56
1. Verfasser: Wilson, Craig D (VerfasserIn)
Weitere Verfasser: Roscoe, Sharon G
Format: Aufsatz
Sprache:English
Veröffentlicht: 2004
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Linoleic Acids Lipids Proteins Stearic Acids Quartz 14808-60-7 Oleic Acid 2UMI9U37CP mehr... Platinum 49DFR088MY stearic acid 4ELV7Z65AP Lactalbumin 9013-90-5
Beschreibung
Zusammenfassung:The electrochemical quartz crystal nanobalance (EQCN) was used to measure the adsorption behavior of a series of lipids (stearate, oleate, linoleate, and gamma-linolenate) on a Pt surface from a phosphate buffer pH 7.0 solution at 295 K and to investigate their adsorption/displacement behavior with the proteins, beta-lactoglobulin and alpha-lactalbumin, which are known to cause fouling during milk processing. The EQCN technique and the complementary technique of cyclic voltammetry measured simultaneously provided information on the efficiency of solubilization of the proteins by these lipids. Excellent agreement was obtained for the surface concentration of adsorbed lipid from the surface charge density from cyclic voltammetry measurements and the change in mass from the EQCN frequency measurements. The Gibbs energy of adsorption showed the lipids to have a strong affinity for the platinum surface. Addition of protein to a preadsorbed lipid layer showed alpha-lactalbumin to be able to coadsorb with the lipids, while beta-lactoglobulin was able to desorb some of the unsaturated lipids but appeared to coadsorb with the saturated lipid, stearate. Addition of lipid to a preadsorbed protein layer showed the unsaturated lipids to be able to displace some of the protein. A comparison of the desorption ability of the lipids showed stearate to be very inefficient at removing protein, while the other three lipids were able to remove each of the proteins, with the order of efficiency for protein desorption being oleate > linoleate > gamma-linolenate
Beschreibung:Date Completed 10.03.2006
Date Revised 21.11.2013
published: Print
Citation Status MEDLINE
ISSN:1520-5827