Assembling and manipulating two-dimensional colloidal crystals with movable nanomagnets

We study crystallization of paramagnetic beads in a magnetic field gradient generated by one-dimensional nanomagnets. The pressure in such a system depends on both the magnetic forces and the hydrodynamic flow, and we estimate the flow threshold for disassembling the crystal near the magnetic potent...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1991. - 20(2004), 17 vom: 17. Aug., Seite 7323-32
1. Verfasser: Helseth, L E (VerfasserIn)
Weitere Verfasser: Wen, H Z, Hansen, R W, Johansen, T H, Heinig, P, Fischer, T M
Format: Aufsatz
Sprache:English
Veröffentlicht: 2004
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:We study crystallization of paramagnetic beads in a magnetic field gradient generated by one-dimensional nanomagnets. The pressure in such a system depends on both the magnetic forces and the hydrodynamic flow, and we estimate the flow threshold for disassembling the crystal near the magnetic potential barrier. A number of different defects have been observed which fluctuate in shape or propagate along the crystal, and it is found that the defect density increases away from the nanomagnet. We also study the melting of the crystal/fluid system after removal of the nanomagnet and demonstrate that the bond-oriental order parameter decreases with time. The nanomagnet can be moved in a controlled manner by a weak external magnetic field, and at sufficiently large driving velocities we observe self-healing crack formation characterized by a roughening of the lattice as well as gap formation. Finally, when confined between two oscillating nanomagnets, the colloidal crystal is shown to break up and form dipolar chains above a certain oscillation frequency
Beschreibung:Date Completed 09.06.2006
Date Revised 10.08.2004
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:0743-7463