|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM149434448 |
003 |
DE-627 |
005 |
20231223051719.0 |
007 |
tu |
008 |
231223s2004 xx ||||| 00| ||eng c |
028 |
5 |
2 |
|a pubmed24n0498.xml
|
035 |
|
|
|a (DE-627)NLM149434448
|
035 |
|
|
|a (NLM)15259941
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Wang, X C
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Pilot study of a fluidized-pellet-bed technique for simultaneous solid/liquid separation and sludge thickening in a sewage treatment plant
|
264 |
|
1 |
|c 2004
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ohne Hilfsmittel zu benutzen
|b n
|2 rdamedia
|
338 |
|
|
|a Band
|b nc
|2 rdacarrier
|
500 |
|
|
|a Date Completed 01.10.2004
|
500 |
|
|
|a Date Revised 24.11.2016
|
500 |
|
|
|a published: Print
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a A fluidized-pellet-bed separator with movable sludge hoppers was applied in pilot scale for the separation and thickening of activated sludge mixture liquid. Under the condition of suspension SS around 4,000 mg/L, polymer (CJX103, cationic, MW 5 x 10(6)) dose at a dry solid ratio of 0.003 and upward flow rate at 5.4 m/hr, the fluidized pellet bed performed solid/liquid separation and sludge thickening well. The SS concentration of the treated water was about 5 mg/L on average and the moisture content of the sludge after screening for 5 min was less than 94%, which is much lower than that after conventional settling and thickening and easy to be finally disposed. At a higher upward flow rate of 7.2 m/hr, similar results could also be obtained but higher polymer dose (solid ratio of 0.004) was required. The morphological characteristics and density-size relationship of the granular particles formed in the fluidized pellet bed were also investigated by image analysis and settling velocity measurement of individual particles. The two-dimensional fractal dimension was evaluated to be 1.6-1.8, showing a good quasi-spherical morphology of the granular particles with their density much higher than the conventional flocs. The results of the pilot study indicate a possible way to innovate the conventional secondary settling and gravitational thickening processes for solid/liquid separation and sludge handling, especially for small scale wastewater treatment plants to reach the goal of space saving and higher treatment efficiency
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
7 |
|a Polymers
|2 NLM
|
650 |
|
7 |
|a Sewage
|2 NLM
|
700 |
1 |
|
|a Jin, P K
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yuan, H L
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, E R
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Tambo, N
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Water science and technology : a journal of the International Association on Water Pollution Research
|d 1986
|g 49(2004), 10 vom: 15., Seite 81-8
|w (DE-627)NLM098149431
|x 0273-1223
|7 nnns
|
773 |
1 |
8 |
|g volume:49
|g year:2004
|g number:10
|g day:15
|g pages:81-8
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 49
|j 2004
|e 10
|b 15
|h 81-8
|