Hyperhydricity of Prunus avium shoots cultured on gelrite : a controlled stress response
Hyperhydricity is a physiological disorder frequently affecting shoots vegetatively propagated in vitro. Hyperhydric shoots are characterised by a translucent aspect due to a chlorophyll deficiency, a not very developed cell wall and a high water content. Hyperhydricity of Prunus avium shoots was ex...
Veröffentlicht in: | Plant physiology and biochemistry : PPB. - 1991. - 42(2004), 6 vom: 01. Juni, Seite 519-27 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , , |
Format: | Aufsatz |
Sprache: | English |
Veröffentlicht: |
2004
|
Zugriff auf das übergeordnete Werk: | Plant physiology and biochemistry : PPB |
Schlagworte: | Comparative Study Journal Article Culture Media Ethylenes Polyamines Polysaccharides, Bacterial gellan gum 7593U09I4D Agar 9002-18-0 mehr... |
Zusammenfassung: | Hyperhydricity is a physiological disorder frequently affecting shoots vegetatively propagated in vitro. Hyperhydric shoots are characterised by a translucent aspect due to a chlorophyll deficiency, a not very developed cell wall and a high water content. Hyperhydricity of Prunus avium shoots was expressed in vitro in one multiplication cycle by replacing the gelling agent agar (normal shoots: NS) by gelrite (hyperhydric shoots: HS). P. avium shoots evolving towards the hyperhydric state produced higher amounts of ethylene, polyamines (PAs) and proline, which are substances considered as stress markers. A higher activity of glutathione peroxidase (GPX; EC 1.11.1.9), involved in organic hydroperoxide elimination, suggested an increased production of these compounds in HS. The unchanged free fatty acid composition indicated no HS membrane damages compared to NS. The ploidy level of HS nuclei was not affected, but the bigger size and the lower percentage of nuclei during the S phase suggested a slowing down of the cell cycle. The results argued for a stress response of the HS, but no signs of oxidative damages of lipid membrane and nucleus were observed. The discussion points out paradoxical results in a classical analysis of stress and suggests an alternative way of defense mechanisms in HS, involving homeostatic regulation and controlled degradation processes to maintain integrity and vital functions of the cell |
---|---|
Beschreibung: | Date Completed 23.09.2004 Date Revised 30.09.2020 published: Print Citation Status MEDLINE |
ISSN: | 1873-2690 |