A semi-implicit solvent model for the simulation of peptides and proteins

Copyright 2004 Wiley Periodicals, Inc.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 25(2004), 8 vom: 27. Juni, Seite 1015-29
1. Verfasser: Basdevant, Nathalie (VerfasserIn)
Weitere Verfasser: Borgis, Daniel, Ha-Duong, Tap
Format: Aufsatz
Sprache:English
Veröffentlicht: 2004
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article Peptides Proteins Solvents Ribonuclease, Pancreatic EC 3.1.27.5 Trypsin EC 3.4.21.4
LEADER 01000naa a22002652 4500
001 NLM147641373
003 DE-627
005 20231223043811.0
007 tu
008 231223s2004 xx ||||| 00| ||eng c
028 5 2 |a pubmed24n0492.xml 
035 |a (DE-627)NLM147641373 
035 |a (NLM)15067677 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Basdevant, Nathalie  |e verfasserin  |4 aut 
245 1 2 |a A semi-implicit solvent model for the simulation of peptides and proteins 
264 1 |c 2004 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 09.06.2004 
500 |a Date Revised 21.11.2008 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a Copyright 2004 Wiley Periodicals, Inc. 
520 |a We present a new model of biomolecules hydration based on macroscopic electrostatic theory, that can both describe the microscopic details of solvent-solute interactions and allow for an efficient evaluation of the electrostatic hydration free energy. This semi-implicit model considers the solvent as an ensemble of polarizable pseudoparticles whose induced dipole describe both the electronic and orientational solvent polarization. In the presented version of the model, there is no mutual dipolar interaction between the particles, and they only interact through short-ranged Lennard-Jones interactions. The model has been integrated into a molecular dynamics code, and offers the possibility to simulate efficiently the conformational evolution of biomolecules. It is able to provide estimations of the electrostatic solvation free energy within short time windows during the simulation. It has been applied to the study of two small peptides, the octaalanine and the N-terminal helix of ribonuclease A, and two proteins, the bovine pancreatic trypsin inhibitor and the B1 immunoglobin-binding domain of streptococcal protein G. Molecular dynamics simulations of these biomolecules, using a slightly modified Amber force field, provide stable and meaningful trajectories in overall agreement with experiments and all-atom simulations. Correlations with respect to Poisson-Boltzmann electrostatic solvation free energies are also presented to discuss the parameterization of the model and its consequences 
650 4 |a Journal Article 
650 7 |a Peptides  |2 NLM 
650 7 |a Proteins  |2 NLM 
650 7 |a Solvents  |2 NLM 
650 7 |a Ribonuclease, Pancreatic  |2 NLM 
650 7 |a EC 3.1.27.5  |2 NLM 
650 7 |a Trypsin  |2 NLM 
650 7 |a EC 3.4.21.4  |2 NLM 
700 1 |a Borgis, Daniel  |e verfasserin  |4 aut 
700 1 |a Ha-Duong, Tap  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 25(2004), 8 vom: 27. Juni, Seite 1015-29  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnns 
773 1 8 |g volume:25  |g year:2004  |g number:8  |g day:27  |g month:06  |g pages:1015-29 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 25  |j 2004  |e 8  |b 27  |c 06  |h 1015-29