Superresolution of ultrasound images using the first and second harmonic signal

This paper presents a new method of blind two-dimensional (2-D) homomorphic deconvolution and speckle reduction applied to medical ultrasound images. The deconvolution technique is based on an improved 2-D phase unwrapping scheme for pulse estimation. The input images are decomposed into minimum-pha...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control. - 1999. - 51(2004), 2 vom: 23. Feb., Seite 163-75
1. Verfasser: Taxt, Torfinn (VerfasserIn)
Weitere Verfasser: Jirík, Radovan
Format: Aufsatz
Sprache:English
Veröffentlicht: 2004
Zugriff auf das übergeordnete Werk:IEEE transactions on ultrasonics, ferroelectrics, and frequency control
Schlagworte:Comparative Study Evaluation Study Journal Article Research Support, Non-U.S. Gov't Validation Study
Beschreibung
Zusammenfassung:This paper presents a new method of blind two-dimensional (2-D) homomorphic deconvolution and speckle reduction applied to medical ultrasound images. The deconvolution technique is based on an improved 2-D phase unwrapping scheme for pulse estimation. The input images are decomposed into minimum-phase and allpass components. The 2-D phase unwrapping is applied only to the allpass component. The 2-D phase of the minimum-phase component is derived by a Hilbert transform. The accuracy of 2-D phase unwrapping is also improved by processing small (16 x 16 pixels) overlapping subimages separately. This takes the spatial variance of the ultrasound pulse into account. The deconvolution algorithm is applied separately to the first and second harmonic images, producing much sharper images of approximately the same resolution and different speckle patterns. Speckle reduction is made by adding the envelope images of the deconvolved first and second harmonic images. Neither the spatial resolution nor the frame rate decreases, as the common compounding speckle reduction techniques do. The method is tested on sequences of clinical ultrasound images, resulting in high-resolution ultrasound images with reduced speckle noise
Beschreibung:Date Completed 11.05.2004
Date Revised 10.12.2019
published: Print
Citation Status MEDLINE
ISSN:0885-3010