A new hierarchical parallelization scheme : generalized distributed data interface (GDDI), and an application to the fragment molecular orbital method (FMO)

Copyright 2004 Wiley Periodicals, Inc. J Comput Chem 25: 872-880, 2004

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 25(2004), 6 vom: 30. Apr., Seite 872-80
1. Verfasser: Fedorov, Dmitri G (VerfasserIn)
Weitere Verfasser: Olson, Ryan M, Kitaura, Kazuo, Gordon, Mark S, Koseki, Shiro
Format: Aufsatz
Sprache:English
Veröffentlicht: 2004
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM14711988X
003 DE-627
005 20231223042649.0
007 tu
008 231223s2004 xx ||||| 00| ||eng c
028 5 2 |a pubmed24n0491.xml 
035 |a (DE-627)NLM14711988X 
035 |a (NLM)15011259 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Fedorov, Dmitri G  |e verfasserin  |4 aut 
245 1 2 |a A new hierarchical parallelization scheme  |b generalized distributed data interface (GDDI), and an application to the fragment molecular orbital method (FMO) 
264 1 |c 2004 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 27.05.2004 
500 |a Date Revised 10.03.2004 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Copyright 2004 Wiley Periodicals, Inc. J Comput Chem 25: 872-880, 2004 
520 |a A two-level hierarchical scheme, generalized distributed data interface (GDDI), implemented into GAMESS is presented. Parallelization is accomplished first at the upper level by assigning computational tasks to groups. Then each group does parallelization at the lower level, by dividing its task into smaller work loads. The types of computations that can be used with this scheme are limited to those for which nearly independent tasks and subtasks can be assigned. Typical examples implemented, tested, and analyzed in this work are numeric derivatives and the fragment molecular orbital method (FMO) that is used to compute large molecules quantum mechanically by dividing them into fragments. Numeric derivatives can be used for algorithms based on them, such as geometry optimizations, saddle-point searches, frequency analyses, etc. This new hierarchical scheme is found to be a flexible tool easily utilizing network topology and delivering excellent performance even on slow networks. In one of the typical tests, on 16 nodes the scalability of GDDI is 1.7 times better than that of the standard parallelization scheme DDI and on 128 nodes GDDI is 93 times faster than DDI (on a multihub Fast Ethernet network). FMO delivered scalability of 80-90% on 128 nodes, depending on the molecular system (water clusters and a protein). A numerical gradient calculation for a water cluster achieved a scalability of 70% on 128 nodes. It is expected that GDDI will become a preferred tool on massively parallel computers for appropriate computational tasks 
650 4 |a Journal Article 
700 1 |a Olson, Ryan M  |e verfasserin  |4 aut 
700 1 |a Kitaura, Kazuo  |e verfasserin  |4 aut 
700 1 |a Gordon, Mark S  |e verfasserin  |4 aut 
700 1 |a Koseki, Shiro  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 25(2004), 6 vom: 30. Apr., Seite 872-80  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnns 
773 1 8 |g volume:25  |g year:2004  |g number:6  |g day:30  |g month:04  |g pages:872-80 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 25  |j 2004  |e 6  |b 30  |c 04  |h 872-80