|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM146811151 |
003 |
DE-627 |
005 |
20250205094519.0 |
007 |
tu |
008 |
231223s2004 xx ||||| 00| ||eng c |
028 |
5 |
2 |
|a pubmed25n0490.xml
|
035 |
|
|
|a (DE-627)NLM146811151
|
035 |
|
|
|a (NLM)14978718
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Stern, Harry A
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Simple algorithm for isothermal-isobaric molecular dynamics
|
264 |
|
1 |
|c 2004
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ohne Hilfsmittel zu benutzen
|b n
|2 rdamedia
|
338 |
|
|
|a Band
|b nc
|2 rdacarrier
|
500 |
|
|
|a Date Completed 27.04.2004
|
500 |
|
|
|a Date Revised 23.02.2004
|
500 |
|
|
|a published: Print
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a Copyright 2004 Wiley Periodicals, Inc. J Comput Chem 25: 749-761, 2004
|
520 |
|
|
|a We review principles of non-Hamiltonian statistical mechanics and present a new set of equations and integration algorithm for isothermal-isobaric dynamics. The chief advantage of the present scheme is that it is somewhat simpler than previous methods. We perform numerical simulations to test the accuracy of the algorithm and compare its stability to that of a "gold standard," a symplectic integrator for Hamiltonian dynamics of the same system. The stability of the isothermal-isobaric algorithm is comparable to the stability of the symplectic integrator
|
650 |
|
4 |
|a Journal Article
|
773 |
0 |
8 |
|i Enthalten in
|t Journal of computational chemistry
|d 1984
|g 25(2004), 5 vom: 15. Apr., Seite 749-61
|w (DE-627)NLM098138448
|x 0192-8651
|7 nnns
|
773 |
1 |
8 |
|g volume:25
|g year:2004
|g number:5
|g day:15
|g month:04
|g pages:749-61
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 25
|j 2004
|e 5
|b 15
|c 04
|h 749-61
|