Design of water hyacinth ponds for removing algal particles from waste stabilization ponds

In this study it was demonstrated that when water hyacinth ponds (WHPs) are used for polishing the effluent from waste stabilization ponds (WSPs), suspended solids (mostly algal particles) are efficiently separated, which also resulted in the reduction of insoluble forms of COD and nutrients. The hi...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Water science and technology : a journal of the International Association on Water Pollution Research. - 1986. - 48(2003), 11-12 vom: 24., Seite 115-23
1. Verfasser: Kim, Y (VerfasserIn)
Weitere Verfasser: Giokas, D L, Chung, P G, Lee, D R
Format: Aufsatz
Sprache:English
Veröffentlicht: 2003
Zugriff auf das übergeordnete Werk:Water science and technology : a journal of the International Association on Water Pollution Research
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Oxygen S88TT14065
Beschreibung
Zusammenfassung:In this study it was demonstrated that when water hyacinth ponds (WHPs) are used for polishing the effluent from waste stabilization ponds (WSPs), suspended solids (mostly algal particles) are efficiently separated, which also resulted in the reduction of insoluble forms of COD and nutrients. The high pH of the WSPs effluent was easily adjusted to 6-7 as it passed through the WHPs. However, the use of water hyacinth rapidly reduced dissolved oxygen at the first cell to less than three mg/L or very frequently to a level of anaerobic state. Reduction of suspended solids at the WHPs mainly depends on the detention time and pH. An empirical separation model incorporating the detention time and pH dependence was developed
Beschreibung:Date Completed 27.04.2004
Date Revised 21.11.2013
published: Print
Citation Status MEDLINE
ISSN:0273-1223