Class I ribonucleotide reductase revisited : the effect of removing a proton on Glu441

Copyright 2003 Wiley Periodicals, Inc.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 25(2004), 3 vom: 15. Feb., Seite 311-21
1. Verfasser: Pelmenschikov, Vladimir (VerfasserIn)
Weitere Verfasser: Cho, Kyung-Bin, Siegbahn, Per E M
Format: Aufsatz
Sprache:English
Veröffentlicht: 2004
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article Protons Glutamic Acid 3KX376GY7L Ribonucleotide Reductases EC 1.17.4.- Asparaginase EC 3.5.1.1 Cysteine K848JZ4886
LEADER 01000naa a22002652 4500
001 NLM144076241
003 DE-627
005 20231223032342.0
007 tu
008 231223s2004 xx ||||| 00| ||eng c
028 5 2 |a pubmed24n0480.xml 
035 |a (DE-627)NLM144076241 
035 |a (NLM)14696066 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Pelmenschikov, Vladimir  |e verfasserin  |4 aut 
245 1 0 |a Class I ribonucleotide reductase revisited  |b the effect of removing a proton on Glu441 
264 1 |c 2004 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 15.03.2004 
500 |a Date Revised 21.11.2013 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a Copyright 2003 Wiley Periodicals, Inc. 
520 |a The substrate mechanism of class I ribonucleotide reductase has been revisited using the hybrid density functional B3LYP method. The molecular model used is based on the X-ray structure and includes all the residues of the R1 subunit commonly considered in the RNR substrate conversion scheme: Cys439 initiating the reaction as a thiyl radical, the redox-active cysteines Cys225 and Cys462, and the catalytically important Glu441 and Asn437. In contrast to previous theoretical studies of the overall mechanism, Glu441 is added as an anion. All relevant transition states have been optimized, including one where an electron is transferred 8 A from the disulfide to the substrate simultaneously with a proton transfer from Glu441. The calculated barrier for this step is 19.1 kcal/mol, which can be compared to the rate-limiting barrier indicated by experiments of about 17 kcal/mol. Even though the calculated barrier is somewhat higher than the experimental limit, the discrepancy is within the normal error bounds of B3LYP. The suggestion from the present modeling study is thus that a protonated Glu441 does not need to be present at the active site from the beginning of the catalytic cycle. However, the previously suggested mechanism with an initial protonation of Glu441 cannot be ruled out, because even with the cost added for protonation of Glu441 with a typical pK(a) of 4, the barrier for that mechanism is lower than the one obtained for the present mechanism. The results are compared to experimental results and suggestions 
650 4 |a Journal Article 
650 7 |a Protons  |2 NLM 
650 7 |a Glutamic Acid  |2 NLM 
650 7 |a 3KX376GY7L  |2 NLM 
650 7 |a Ribonucleotide Reductases  |2 NLM 
650 7 |a EC 1.17.4.-  |2 NLM 
650 7 |a Asparaginase  |2 NLM 
650 7 |a EC 3.5.1.1  |2 NLM 
650 7 |a Cysteine  |2 NLM 
650 7 |a K848JZ4886  |2 NLM 
700 1 |a Cho, Kyung-Bin  |e verfasserin  |4 aut 
700 1 |a Siegbahn, Per E M  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 25(2004), 3 vom: 15. Feb., Seite 311-21  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnns 
773 1 8 |g volume:25  |g year:2004  |g number:3  |g day:15  |g month:02  |g pages:311-21 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 25  |j 2004  |e 3  |b 15  |c 02  |h 311-21