Operating feasibility of anaerobic whey treatment in a stirred sequencing batch reactor containing immobilized biomass

The scope of this work was to evaluate the operating feasibility of anaerobic whey treatment in a stirred sequencing batch reactor (ASBR) containing biomass immobilized on inert support. Assays were performed using 8-hour cycles and agitation rate of 200 rpm at 30 +/- 1 degrees C, for treating chees...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Water science and technology : a journal of the International Association on Water Pollution Research. - 1986. - 48(2003), 6 vom: 15., Seite 179-86
1. Verfasser: Ratusznei, S M (VerfasserIn)
Weitere Verfasser: Rodrigues, J A D, Zaiat, M
Format: Aufsatz
Sprache:English
Veröffentlicht: 2003
Zugriff auf das übergeordnete Werk:Water science and technology : a journal of the International Association on Water Pollution Research
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Industrial Waste Milk Proteins Whey Proteins Oxygen S88TT14065
Beschreibung
Zusammenfassung:The scope of this work was to evaluate the operating feasibility of anaerobic whey treatment in a stirred sequencing batch reactor (ASBR) containing biomass immobilized on inert support. Assays were performed using 8-hour cycles and agitation rate of 200 rpm at 30 +/- 1 degrees C, for treating cheese whey containing 500 to 4,000 mgCOD/L, which corresponded to a volumetric organic load (VOL) of 0.81 to 5.7 gCOD/L x d. Stability and high organic matter removal of about 96% were achieved at effluent concentration below 160 mgCOD/L for non filtered samples. Operating stability of the reactor was shown to be strongly dependent on the alkalinity supplementing strategy during the assay, especially during the startup period, where NaHCO3 supplementation was approximately 20-30% of the chemical oxygen demand (mgNaHCO3/mgCOD). After startup, alkalinity supplementation could be reduced down to 10% maintaining efficiency and stability. Moreover, proper homogenization of the system through mechanical agitation was also shown to be indispensable, especially with increasing organic load
Beschreibung:Date Completed 13.04.2004
Date Revised 19.11.2015
published: Print
Citation Status MEDLINE
ISSN:0273-1223