Adsorption of organic substances on broken clay surfaces : a quantum chemical study

Copyright 2003 Wiley Periodicals, Inc. J Comput Chem 24: 1853-1863, 2003

Détails bibliographiques
Publié dans:Journal of computational chemistry. - 1984. - 24(2003), 15 vom: 30. Nov., Seite 1853-63
Auteur principal: Aquino, Adélia J A (Auteur)
Autres auteurs: Tunega, Daniel, Haberhauer, Georg, Gerzabek, Martin H, Lischka, Hans
Format: Article
Langue:English
Publié: 2003
Accès à la collection:Journal of computational chemistry
Sujets:Journal Article
Description
Résumé:Copyright 2003 Wiley Periodicals, Inc. J Comput Chem 24: 1853-1863, 2003
Hydrogen-bonded interactions between local defect structures on broken clay surfaces modeled as molecular clusters and the organic molecules acetic acid, acetate, and N-methylacetamide (NMA) have been investigated. Density functional theory and polarized basis sets have been used for the computation of optimized interaction complexes and formation energies. The activity of the defect structures has been characterized as physical or chemical in terms of the strength of the hydrogen bonds formed. Chemical defects lead to significantly enhanced interactions with stronger hydrogen bonds and larger elongation of OH bonds in comparison to the physical defects. The type of interaction with the defect structure significantly influences the planarity of the model peptide bond in NMA. Both cases, enhancement of the planarity by increase of the CN double bond character and strong deviations from planarity, are observed
Description:Date Completed 24.03.2004
Date Revised 29.09.2003
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:1096-987X