|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM125832028 |
003 |
DE-627 |
005 |
20231222210553.0 |
007 |
tu |
008 |
231222s2003 xx ||||| 00| ||eng c |
028 |
5 |
2 |
|a pubmed24n0420.xml
|
035 |
|
|
|a (DE-627)NLM125832028
|
035 |
|
|
|a (NLM)12820130
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Das, B
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Performance of hybrid methods for large-scale unconstrained optimization as applied to models of proteins
|
264 |
|
1 |
|c 2003
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ohne Hilfsmittel zu benutzen
|b n
|2 rdamedia
|
338 |
|
|
|a Band
|b nc
|2 rdacarrier
|
500 |
|
|
|a Date Completed 11.02.2004
|
500 |
|
|
|a Date Revised 14.11.2007
|
500 |
|
|
|a published: Print
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a Copyright 2003 Wiley Periodicals, Inc. J Comput Chem 24: 1222-1231, 2003
|
520 |
|
|
|a Energy minimization plays an important role in structure determination and analysis of proteins, peptides, and other organic molecules; therefore, development of efficient minimization algorithms is important. Recently, Morales and Nocedal developed hybrid methods for large-scale unconstrained optimization that interlace iterations of the limited-memory BFGS method (L-BFGS) and the Hessian-free Newton method (Computat Opt Appl 2002, 21, 143-154). We test the performance of this approach as compared to those of the L-BFGS algorithm of Liu and Nocedal and the truncated Newton (TN) with automatic preconditioner of Nash, as applied to the protein bovine pancreatic trypsin inhibitor (BPTI) and a loop of the protein ribonuclease A. These systems are described by the all-atom AMBER force field with a dielectric constant epsilon = 1 and a distance-dependent dielectric function epsilon = 2r, where r is the distance between two atoms. It is shown that for the optimal parameters the hybrid approach is typically two times more efficient in terms of CPU time and function/gradient calculations than the two other methods. The advantage of the hybrid approach increases as the electrostatic interactions become stronger, that is, in going from epsilon = 2r to epsilon = 1, which leads to a more rugged and probably more nonlinear potential energy surface. However, no general rule that defines the optimal parameters has been found and their determination requires a relatively large number of trial-and-error calculations for each problem
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, U.S. Gov't, Non-P.H.S.
|
650 |
|
4 |
|a Research Support, U.S. Gov't, P.H.S.
|
650 |
|
7 |
|a Peptides
|2 NLM
|
650 |
|
7 |
|a Proteins
|2 NLM
|
650 |
|
7 |
|a Aprotinin
|2 NLM
|
650 |
|
7 |
|a 9087-70-1
|2 NLM
|
650 |
|
7 |
|a Ribonuclease, Pancreatic
|2 NLM
|
650 |
|
7 |
|a EC 3.1.27.5
|2 NLM
|
700 |
1 |
|
|a Meirovitch, H
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Navon, I M
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Journal of computational chemistry
|d 1984
|g 24(2003), 10 vom: 30. Juli, Seite 1222-31
|w (DE-627)NLM098138448
|x 1096-987X
|7 nnns
|
773 |
1 |
8 |
|g volume:24
|g year:2003
|g number:10
|g day:30
|g month:07
|g pages:1222-31
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 24
|j 2003
|e 10
|b 30
|c 07
|h 1222-31
|