Statistical modeling and visualization of molecular profiles in cancer

Current cancer classifications using morphological criteria produce heterogeneous classes with variable prognosis and clinical course. By measuring gene expression for thousands of genes in a single hybridization experiment, microarrays have the potential to contribute to more effective classificati...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:BioTechniques. - 1993. - Suppl(2003) vom: 31. März, Seite 22-9
1. Verfasser: Scharpf, Robert (VerfasserIn)
Weitere Verfasser: Garrett, Elizabeth S, Hu, Jiang, Parmigiani, Giovanni
Format: Aufsatz
Sprache:English
Veröffentlicht: 2003
Zugriff auf das übergeordnete Werk:BioTechniques
Schlagworte:Evaluation Study Journal Article DNA, Neoplasm
LEADER 01000caa a22002652 4500
001 NLM124377149
003 DE-627
005 20250203215513.0
007 tu
008 231222s2003 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n0415.xml 
035 |a (DE-627)NLM124377149 
035 |a (NLM)12664681 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Scharpf, Robert  |e verfasserin  |4 aut 
245 1 0 |a Statistical modeling and visualization of molecular profiles in cancer 
264 1 |c 2003 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 26.09.2003 
500 |a Date Revised 10.12.2019 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a Current cancer classifications using morphological criteria produce heterogeneous classes with variable prognosis and clinical course. By measuring gene expression for thousands of genes in a single hybridization experiment, microarrays have the potential to contribute to more effective classifications based on molecular information. This gives hope to improve both prognosis and treatment. Statistical methods for molecular classification have focused on using high dimensional representations of molecular profiles to identify subclasses. These can be noisy, unstable, and highly platform-specific. In this article, we emphasize the notion of molecular profiles based on latent categories signifying under-, over-, and baseline expression. Following this approach, we can generate results that are more easily interpretable, more easily translated into clinical tools, more robust to noise, and less platform-dependent. We illustrate both the methods and the associated software for molecular class discovery on a data set of 244 microarrays comprising six known leukemia classes 
650 4 |a Evaluation Study 
650 4 |a Journal Article 
650 7 |a DNA, Neoplasm  |2 NLM 
700 1 |a Garrett, Elizabeth S  |e verfasserin  |4 aut 
700 1 |a Hu, Jiang  |e verfasserin  |4 aut 
700 1 |a Parmigiani, Giovanni  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t BioTechniques  |d 1993  |g Suppl(2003) vom: 31. März, Seite 22-9  |w (DE-627)NLM012627046  |x 0736-6205  |7 nnns 
773 1 8 |g volume:Suppl  |g year:2003  |g day:31  |g month:03  |g pages:22-9 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_21 
912 |a GBV_ILN_22 
912 |a GBV_ILN_39 
912 |a GBV_ILN_40 
912 |a GBV_ILN_50 
912 |a GBV_ILN_60 
912 |a GBV_ILN_62 
912 |a GBV_ILN_65 
912 |a GBV_ILN_70 
912 |a GBV_ILN_99 
912 |a GBV_ILN_121 
912 |a GBV_ILN_130 
912 |a GBV_ILN_227 
912 |a GBV_ILN_350 
912 |a GBV_ILN_618 
912 |a GBV_ILN_640 
912 |a GBV_ILN_754 
912 |a GBV_ILN_2001 
912 |a GBV_ILN_2002 
912 |a GBV_ILN_2003 
912 |a GBV_ILN_2005 
912 |a GBV_ILN_2006 
912 |a GBV_ILN_2007 
912 |a GBV_ILN_2008 
912 |a GBV_ILN_2009 
912 |a GBV_ILN_2010 
912 |a GBV_ILN_2012 
912 |a GBV_ILN_2015 
912 |a GBV_ILN_2018 
912 |a GBV_ILN_2023 
912 |a GBV_ILN_2035 
912 |a GBV_ILN_2040 
912 |a GBV_ILN_2060 
912 |a GBV_ILN_2099 
912 |a GBV_ILN_2105 
912 |a GBV_ILN_2121 
912 |a GBV_ILN_2470 
951 |a AR 
952 |d Suppl  |j 2003  |b 31  |c 03  |h 22-9