Differential forms of the Kramers-Krönig dispersion relations

Differential forms of the Kramers-Krönig dispersion relations provide an alternative to the integral Kramers-Krönig dispersion relations for comparison with finite-bandwidth experimental data. The differential forms of the Kramers-Krönig relations are developed in the context of tempered distributio...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control. - 1999. - 50(2003), 1 vom: 20. Jan., Seite 68-76
1. Verfasser: Waters, Kendall R (VerfasserIn)
Weitere Verfasser: Hughes, Michael S, Mobley, Joel, Miller, James G
Format: Aufsatz
Sprache:English
Veröffentlicht: 2003
Zugriff auf das übergeordnete Werk:IEEE transactions on ultrasonics, ferroelectrics, and frequency control
Schlagworte:Comparative Study Journal Article Research Support, U.S. Gov't, P.H.S. Validation Study Silicones Castor Oil 8001-79-4 Polymethyl Methacrylate 9011-14-7
Beschreibung
Zusammenfassung:Differential forms of the Kramers-Krönig dispersion relations provide an alternative to the integral Kramers-Krönig dispersion relations for comparison with finite-bandwidth experimental data. The differential forms of the Kramers-Krönig relations are developed in the context of tempered distributions. Results are illustrated for media with attenuation obeying an arbitrary frequency power law (alpha(omega) = alpha0 + alpha1(absolute value of omega)y). Dispersion predictions using the differential dispersion relations are compared to the measured dispersion for a series of specimens (two polymers, an egg yolk, and two liquids) exhibiting attenuation obeying a frequency power law (1.00 < or = y < or = 1.99), with very good agreement found. For this form of ultrasonic attenuation, the differential Kramers-Krönig dispersion prediction is found to be identical to the (integral) Kramers-Krönig dispersion prediction
Beschreibung:Date Completed 18.03.2003
Date Revised 10.12.2019
published: Print
Citation Status MEDLINE
ISSN:0885-3010