Characterization of nitrogen relationships between Sorghum bicolor and the root-hemiparasitic angiosperm Striga hermonthica (Del.) Benth. using K15 NO3 as isotopic tracer
The role of the host in the nitrogen nutrition of Striga hermonthica (Del.) Benth. (Scrophulariaceae) parasitic on Sorghum bicolor cv. SH4 Arval has been investigated using (15)N-nitrate as the tracer. It is shown that, when nitrate is absorbed only by the roots of the host plant, a rapid transfer o...
Veröffentlicht in: | Journal of experimental botany. - 1985. - 54(2003), 383 vom: 01. Feb., Seite 789-99 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , |
Format: | Aufsatz |
Sprache: | English |
Veröffentlicht: |
2003
|
Zugriff auf das übergeordnete Werk: | Journal of experimental botany |
Schlagworte: | Journal Article Nitrates Nitrogen Isotopes Potassium Compounds Glutamine 0RH81L854J Asparagine 7006-34-0 Nitrogen N762921K75 mehr... |
Zusammenfassung: | The role of the host in the nitrogen nutrition of Striga hermonthica (Del.) Benth. (Scrophulariaceae) parasitic on Sorghum bicolor cv. SH4 Arval has been investigated using (15)N-nitrate as the tracer. It is shown that, when nitrate is absorbed only by the roots of the host plant, a rapid transfer of nitrogen to the parasite can be detected. The xylem sap of S. hermonthica contained approximately equal amounts of nitrate and amino acids, mostly glutamine and asparagine. Infection altered the free amino acid profile of the host tissues, leading notably to a large increase in asparagine and a decrease in glutamine. The haustoria of S. hermonthica, although rich in nitrate, showed a low concentration of free amino acids, particularly lacking in asparagine and glutamine. The roots of S. hermonthica, in contrast, were rich in both asparagine and glutamine while, in the shoots, asparagine constituted 80% of the total FAA pool. Asparagine was also found to be the primary (15)N-enriched amino acid in the shoots of S. hermonthica while, interestingly, it was glutamate that was most strongly enriched in the roots. It is concluded that nitrogen nutrition in S. hermonthica is based on a supply of both nitrate and amino acids from the host. This implies a non-specific transfer in the transpiration stream. Nitrate reduction probably occurs mainly in the leaves of the parasite. Assimilation also occurs in S. hermonthica and excess nitrogen is stored as the non-toxic nitrogen-rich compound, asparagine. This specific trait of nitrogen metabolism of the parasite is discussed in relation to the effect of nitrogen fertilization on reducing infestation |
---|---|
Beschreibung: | Date Completed 16.06.2003 Date Revised 13.05.2019 published: Print Citation Status MEDLINE |
ISSN: | 1460-2431 |