Correlation method for variance reduction of Monte Carlo integration in RS-HDMR

Copyright 2003 Wiley Periodicals, Inc. J Comput Chem 24: 277-283, 2003

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 24(2003), 3 vom: 15. Feb., Seite 277-83
1. Verfasser: Li, Genyuan (VerfasserIn)
Weitere Verfasser: Rabitz, Herschel, Wang, Sheng-Wei, Georgopoulos, Panos G
Format: Aufsatz
Sprache:English
Veröffentlicht: 2003
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Copyright 2003 Wiley Periodicals, Inc. J Comput Chem 24: 277-283, 2003
The High Dimensional Model Representation (HDMR) technique is a procedure for efficiently representing high-dimensional functions. A practical form of the technique, RS-HDMR, is based on randomly sampling the overall function and utilizing orthonormal polynomial expansions. The determination of expansion coefficients employs Monte Carlo integration, which controls the accuracy of RS-HDMR expansions. In this article, a correlation method is used to reduce the Monte Carlo integration error. The determination of the expansion coefficients becomes an iteration procedure, and the resultant RS-HDMR expansion has much better accuracy than that achieved by direct Monte Carlo integration. For an illustration in four dimensions a few hundred random samples are sufficient to construct an RS-HDMR expansion by the correlation method with an accuracy comparable to that obtained by direct Monte Carlo integration with thousands of samples
Beschreibung:Date Completed 07.07.2003
Date Revised 04.11.2003
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:1096-987X