Differentiation of legume cotyledons as related to metabolic gradients and assimilate transport into seeds

Legume seed development is closely related to metabolism and nutrient transport. To analyse this relationship, a combination of biochemical, histological and transgenic approaches was used. Sugars within tissue sections have been quantitatively measured by metabolic imaging. During cotyledon differe...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental botany. - 1985. - 54(2003), 382 vom: 21. Jan., Seite 503-12
1. Verfasser: Borisjuk, Ljudmilla (VerfasserIn)
Weitere Verfasser: Rolletschek, Hardy, Wobus, Ulrich, Weber, Hans
Format: Aufsatz
Sprache:English
Veröffentlicht: 2003
Zugriff auf das übergeordnete Werk:Journal of experimental botany
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Review Membrane Transport Proteins Plant Proteins sucrose transport protein, plant Sucrose 57-50-1 Carbon 7440-44-0 mehr... Starch 9005-25-8 Nucleotidyltransferases EC 2.7.7.- Glucose-1-Phosphate Adenylyltransferase EC 2.7.7.27 Glucose IY9XDZ35W2 Oxygen S88TT14065
LEADER 01000caa a22002652 4500
001 NLM122909216
003 DE-627
005 20240114232415.0
007 tu
008 231222s2003 xx ||||| 00| ||eng c
028 5 2 |a pubmed24n1253.xml 
035 |a (DE-627)NLM122909216 
035 |a (NLM)12508061 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Borisjuk, Ljudmilla  |e verfasserin  |4 aut 
245 1 0 |a Differentiation of legume cotyledons as related to metabolic gradients and assimilate transport into seeds 
264 1 |c 2003 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 28.05.2003 
500 |a Date Revised 09.01.2024 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a Legume seed development is closely related to metabolism and nutrient transport. To analyse this relationship, a combination of biochemical, histological and transgenic approaches was used. Sugars within tissue sections have been quantitatively measured by metabolic imaging. During cotyledon differentiation glucose gradients emerge related to a particular cell type, with higher concentrations in non-differentiated premature regions. Sucrose in creases at the beginning of maturation in a layer underneath the outer epidermis expressing a sucrose transporter. Sucrose distribution is initially controlled by uptake activity and the permeability within the parenchyma and, later on, also by differences in growth and starch accumulation. Increased sucrose levels are accompanied by increased levels of sucrose synthase and ADP-Glc pyrophosphorylase mRNAs, but carbon flux into starch is initially still low. Rates increase at a stage when hexose concentrations become low, allowing increased flux through the sucrose synthase pathway. Transfer cell formation represents a regional specification of the cotyledonary epidermis for embryo nutrition characterized by increased transport-active cell surfaces and up-regulated expression of transport-related genes. The E2748 pea seed mutation blocks epidermal differentiation into transfer cells and leads to the loss of epidermal cell identity. Embryos with impaired epidermis cannot tolerate elevated levels of sucrose and respond with disorganized growth. The E2748 gene product is required for transfer cell formation in developing cotyledons with no other function during plant growth. Seed coat permeability provides a hypoxic environment for embryo development. However, at maturity, seed energy supply is not limited indicating fundamental developmental and metabolic adaptations. Results from transgenic seeds show that altered expression of single genes induces complex and unexpected changes. In AGP-antisense seeds the block in starch synthesis leads to pleiotropic effects of water and nitrogen content and induces temporal changes in seed development 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a Review 
650 7 |a Membrane Transport Proteins  |2 NLM 
650 7 |a Plant Proteins  |2 NLM 
650 7 |a sucrose transport protein, plant  |2 NLM 
650 7 |a Sucrose  |2 NLM 
650 7 |a 57-50-1  |2 NLM 
650 7 |a Carbon  |2 NLM 
650 7 |a 7440-44-0  |2 NLM 
650 7 |a Starch  |2 NLM 
650 7 |a 9005-25-8  |2 NLM 
650 7 |a Nucleotidyltransferases  |2 NLM 
650 7 |a EC 2.7.7.-  |2 NLM 
650 7 |a Glucose-1-Phosphate Adenylyltransferase  |2 NLM 
650 7 |a EC 2.7.7.27  |2 NLM 
650 7 |a Glucose  |2 NLM 
650 7 |a IY9XDZ35W2  |2 NLM 
650 7 |a Oxygen  |2 NLM 
650 7 |a S88TT14065  |2 NLM 
700 1 |a Rolletschek, Hardy  |e verfasserin  |4 aut 
700 1 |a Wobus, Ulrich  |e verfasserin  |4 aut 
700 1 |a Weber, Hans  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of experimental botany  |d 1985  |g 54(2003), 382 vom: 21. Jan., Seite 503-12  |w (DE-627)NLM098182706  |x 1460-2431  |7 nnns 
773 1 8 |g volume:54  |g year:2003  |g number:382  |g day:21  |g month:01  |g pages:503-12 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 54  |j 2003  |e 382  |b 21  |c 01  |h 503-12