Inherent speedup limitations in multiple time step/particle mesh Ewald algorithms

Copyright 2003 Wiley Periodicals, Inc. J Comput Chem 24: 77-88, 2003

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 24(2003), 1 vom: 15. Jan., Seite 77-88
1. Verfasser: Barash, Danny (VerfasserIn)
Weitere Verfasser: Yang, Linjing, Qian, Xiaoliang, Schlick, Tamar
Format: Aufsatz
Sprache:English
Veröffentlicht: 2003
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Comparative Study Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. Research Support, U.S. Gov't, P.H.S. DNA Polymerase beta EC 2.7.7.7
LEADER 01000naa a22002652 4500
001 NLM122677366
003 DE-627
005 20231222195715.0
007 tu
008 231222s2003 xx ||||| 00| ||eng c
028 5 2 |a pubmed24n0409.xml 
035 |a (DE-627)NLM122677366 
035 |a (NLM)12483677 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Barash, Danny  |e verfasserin  |4 aut 
245 1 0 |a Inherent speedup limitations in multiple time step/particle mesh Ewald algorithms 
264 1 |c 2003 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 20.06.2003 
500 |a Date Revised 08.12.2020 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a Copyright 2003 Wiley Periodicals, Inc. J Comput Chem 24: 77-88, 2003 
520 |a Multiple time step (MTS) algorithms present an effective integration approach to reduce the computational cost of dynamics simulations. By using force splitting to allow larger time steps for the more slowly varying force components, computational savings can be realized. The Particle-Mesh-Ewald (PME) method has been independently devised to provide an effective and efficient treatment of the long-range electrostatics interactions. Here we examine the performance of a combined MTS/PME algorithm previously developed for AMBER on a large polymerase beta/DNA complex containing 40,673 atoms. Our goal is to carefully combine the robust features of the Langevin/MTS (LN) methodology implemented in CHARMM-which uses position rather than velocity Verlet with stochasticity to make possible outer time steps of 150 fs-with the PME formulation. The developed MTS/PME integrator removes fast terms from the reciprocal-space Ewald component by using switch functions. We analyze the advantages and limitations of the resulting scheme by comparing performance to the single time step leapfrog Verlet integrator currently used in AMBER by evaluating different time-step protocols using three assessors for accuracy, speedup, and stability, all applied to long (i.e., nanosecond) simulations to ensure proper energy conservation. We also examine the performance of the algorithm on a parallel, distributed shared-memory computer (SGI Origin 2000 with 8 300-MHz R12000 processors). Good energy conservation and stability behavior can be demonstrated, for Newtonian protocols with outer time steps of up to 8 fs and Langevin protocols with outer time steps of up to 16 fs. Still, we emphasize the inherent limitations imposed by the incorporation of MTS methods into the PME formulation that may not be widely appreciated. Namely, the limiting factor on the largest outer time-step size, and hence speedup, is an intramolecular cancellation error inherent to PME. This error stems from the excluded-nonbonded correction term contained in the reciprocal-space component. This cancellation error varies in time and introduces artificial frequencies to the governing dynamics motion. Unfortunately, we find that this numerical PME error cannot be easily eliminated by refining the PME parameters (grid resolution and/or order of interpolating polynomial). We suggest that methods other than PME for fast electrostatics may allow users to reap the full advantages from MTS algorithms 
650 4 |a Comparative Study 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
650 4 |a Research Support, U.S. Gov't, P.H.S. 
650 7 |a DNA Polymerase beta  |2 NLM 
650 7 |a EC 2.7.7.7  |2 NLM 
700 1 |a Yang, Linjing  |e verfasserin  |4 aut 
700 1 |a Qian, Xiaoliang  |e verfasserin  |4 aut 
700 1 |a Schlick, Tamar  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 24(2003), 1 vom: 15. Jan., Seite 77-88  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnns 
773 1 8 |g volume:24  |g year:2003  |g number:1  |g day:15  |g month:01  |g pages:77-88 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 24  |j 2003  |e 1  |b 15  |c 01  |h 77-88