Signals and targets of the self-incompatibility response in pollen of Papaver rhoeas
Self-incompatibility (SI) in Papaver rhoeas involves an allele-specific recognition between stigmatic S-proteins and pollen, resulting in inhibition of incompatible pollen. A picture of some of the signalling events and mechanisms involved in this specific inhibition of pollen tube growth is beginni...
Veröffentlicht in: | Journal of experimental botany. - 1985. - 54(2003), 380 vom: 01. Jan., Seite 141-8 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | |
Format: | Aufsatz |
Sprache: | English |
Veröffentlicht: |
2003
|
Zugriff auf das übergeordnete Werk: | Journal of experimental botany |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't Review Plant Proteins Protein Kinases EC 2.7.- calcium-dependent protein kinase EC 2.7.1.- Mitogen-Activated Protein Kinases EC 2.7.11.24 mehr... |
Zusammenfassung: | Self-incompatibility (SI) in Papaver rhoeas involves an allele-specific recognition between stigmatic S-proteins and pollen, resulting in inhibition of incompatible pollen. A picture of some of the signalling events and mechanisms involved in this specific inhibition of pollen tube growth is beginning to be built up. This highly specific response triggers a Ca(2+)-dependent signalling cascade in incompatible pollen when a stigmatic S-protein interacts with it. Rapid increases in cytosolic free Ca(2+) concentration ([Ca(2+)](i)) can now be attributed (at least in part) to Ca(2+) influx. The rapid loss of the pollen apical Ca(2+) gradient within approximately 1-2 min is accompanied by the inhibition of pollen tube tip growth. Concomitant with this time-frame, hyper-phosphorylation of p26, a soluble pollen phosphoprotein is detected. Characterization of p26 reveals that it is a soluble inorganic pyrophosphatase, which suggests a possible direct functional role in pollen tube growth. Slightly later, a putative MAP kinase (p52) is thought to be activated. Finally, preliminary evidence that programmed cell death (PCD) may be triggered in this response is described. A key target for these signals, the actin cytoskeleton, has also been identified. In this article the current understanding of some of the components of this signalling cascade and how they are beginning to throw some light on possible mechanisms involved in this SI-induced inhibition of pollen tube growth, is discussed |
---|---|
Beschreibung: | Date Completed 03.03.2003 Date Revised 13.05.2019 published: Print Citation Status MEDLINE |
ISSN: | 1460-2431 |