Dynamic Charge Equilibration-Morse stretch force field : application to energetics of pure silica zeolites

Copyright 2002 Wiley Periodicals, Inc.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 23(2002), 16 vom: 01. Dez., Seite 1507-14
1. Verfasser: Sefcik, Jan (VerfasserIn)
Weitere Verfasser: Demiralp, Ersan, Cagin, Tahir, Goddard, William A 3rd
Format: Aufsatz
Sprache:English
Veröffentlicht: 2002
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM121837629
003 DE-627
005 20231222193934.0
007 tu
008 231222s2002 xx ||||| 00| ||eng c
028 5 2 |a pubmed24n0406.xml 
035 |a (DE-627)NLM121837629 
035 |a (NLM)12395420 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Sefcik, Jan  |e verfasserin  |4 aut 
245 1 0 |a Dynamic Charge Equilibration-Morse stretch force field  |b application to energetics of pure silica zeolites 
264 1 |c 2002 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 13.12.2002 
500 |a Date Revised 03.11.2003 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Copyright 2002 Wiley Periodicals, Inc. 
520 |a We present the Dynamic Charge Equilibration (DQEq) method for a self-consistent treatment of charge transfer in force field modeling, where atomic charges are designed to reproduce electrostatic potentials calculated quantum mechanically. Force fields coupled with DQEq allow charges to readjust as geometry changes in classical simulations, using appropriate algorithms for periodic boundary conditions. The full electrostatic energy functional is used to derive the corresponding forces and the second derivatives (hessian) for vibrational calculations. Using DQEq electrostatics, we develop a simple nonbond force field for simulation of silica molecular sieves, where nonelectrostatic interactions are described by two-body Morse stretch terms. Energy minimization calculations with the new force field yield accurate unit cell geometries for siliceous zeolites. Relative enthalpies with respect to quartz and third-law entropies calculated from harmonic vibrational analysis agree very well with available calorimetric data: calculated SiO(2) enthalpies relative to alpha-quartz are within 2 kJ/mol and entropies at 298 K are within 3 J/mol K of the respective experimental values. Contributions from the zero point energy and vibrational degrees of freedom were found to be only about 1 kJ/mol for the free energy of mutual transformations between microporous silica polymorphs. The approach presented here can be applied to interfaces and other oxides as well and it is suitable for development of force fields for accurate modeling of geometry and energetics of microporous and mesoporous materials, while providing a realistic description of electrostatic fields near surfaces and inside pores of adsorbents and catalysts 
650 4 |a Journal Article 
700 1 |a Demiralp, Ersan  |e verfasserin  |4 aut 
700 1 |a Cagin, Tahir  |e verfasserin  |4 aut 
700 1 |a Goddard, William A  |c 3rd  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 23(2002), 16 vom: 01. Dez., Seite 1507-14  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnns 
773 1 8 |g volume:23  |g year:2002  |g number:16  |g day:01  |g month:12  |g pages:1507-14 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 23  |j 2002  |e 16  |b 01  |c 12  |h 1507-14