2D simulation of transport and degradation in the River Rhine

A simple 2D model has been developed for the simulation of mass transport and degradation of substances in the river Rhine. The model describes mass transport in the flow direction with a convective and a dispersive term. Transversal transport is described by segmenting the river and formulating a t...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Water science and technology : a journal of the International Association on Water Pollution Research. - 1986. - 46(2002), 6-7 vom: 01., Seite 99-104
1. Verfasser: Teichmann, L (VerfasserIn)
Weitere Verfasser: Reuschenbach, P, Müller, B, Horn, H
Format: Aufsatz
Sprache:English
Veröffentlicht: 2002
Zugriff auf das übergeordnete Werk:Water science and technology : a journal of the International Association on Water Pollution Research
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Water Pollutants Ammonia 7664-41-7
Beschreibung
Zusammenfassung:A simple 2D model has been developed for the simulation of mass transport and degradation of substances in the river Rhine. The model describes mass transport in the flow direction with a convective and a dispersive term. Transversal transport is described by segmenting the river and formulating a transversal exchange coefficient between the segments. Degradation can be formulated with any kinetics from first order to complex enzyme kinetics. The model was verified with monitoring data from the river Rhine. The hydrodynamic parameters such as dispersion coefficients and exchange coefficients were fitted to the conductivity, which was assumed to be non-degradable. The degradation term was fitted to ammonia values. The model was used to simulate measured concentrations of a readily (Aniline) and a poorly biodegradable substance (1,4-Dioxan) 10 m from the left river bank. It was the objective of this research program to develop a model which allows a realistic estimation of the locally and regionally predicted environmental concentration of chemical substances in the EU risk assessment scheme
Beschreibung:Date Completed 11.02.2003
Date Revised 15.11.2006
published: Print
Citation Status MEDLINE
ISSN:0273-1223