Is the forward problem of ground water hydrology always well posed?

Complex aquifer systems are often modeled with quasi-three-dimensional models, which consider two-dimensional horizontal flow in the aquifers and one-dimensional vertical flow through aquitards. When the aquifer system consists of a phreatic aquifer and one or more semiconfined aquifers connected by...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Ground water. - 1998. - 40(2002), 5 vom: 09. Sept., Seite 500-8
1. Verfasser: Valota, Giorgio (VerfasserIn)
Weitere Verfasser: Giudici, Mauro, Parravicini, Guido, Ponzini, Giansilvio, Romano, Emanuele
Format: Aufsatz
Sprache:English
Veröffentlicht: 2002
Zugriff auf das übergeordnete Werk:Ground water
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000caa a22002652 4500
001 NLM120934299
003 DE-627
005 20250203115222.0
007 tu
008 231222s2002 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n0403.xml 
035 |a (DE-627)NLM120934299 
035 |a (NLM)12236263 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Valota, Giorgio  |e verfasserin  |4 aut 
245 1 0 |a Is the forward problem of ground water hydrology always well posed? 
264 1 |c 2002 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 31.01.2003 
500 |a Date Revised 06.11.2019 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a Complex aquifer systems are often modeled with quasi-three-dimensional models, which consider two-dimensional horizontal flow in the aquifers and one-dimensional vertical flow through aquitards. When the aquifer system consists of a phreatic aquifer and one or more semiconfined aquifers connected by aquitards, the discrete model consists of a nonlinear system of algebraic equations, because the transmissivity of the phreatic aquifer depends on the phreatic head. If the water extraction is very high, the phreatic aquifer can be depleted and the equations of the model must be modified accordingly. There are not simple and general criteria to state if the phreatic aquifer is depleted before solving the system of equations. Therefore, the iterative procedures (e.g., relaxation methods), used to find the solution to the forward problem, must handle these particular conditions and can suffer several problems of convergence. These problems can be caused by the choice of the initial head values or of the relaxation coefficient of the iterative algorithms; however, they can also be caused by the nonexistence or nonuniqueness of the solution to the system of nonlinear equations. The study of existence and uniqueness of the general problem is very difficult and, therefore, we consider a simplified problem, for which the discrete model can be handled analytically. The results of the numerical experiments show that the solution to the forward problem can be nonunique. Only for some cases it is possible to invoke physical arguments to eliminate tentative solutions 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Giudici, Mauro  |e verfasserin  |4 aut 
700 1 |a Parravicini, Guido  |e verfasserin  |4 aut 
700 1 |a Ponzini, Giansilvio  |e verfasserin  |4 aut 
700 1 |a Romano, Emanuele  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Ground water  |d 1998  |g 40(2002), 5 vom: 09. Sept., Seite 500-8  |w (DE-627)NLM098182528  |x 0017-467X  |7 nnns 
773 1 8 |g volume:40  |g year:2002  |g number:5  |g day:09  |g month:09  |g pages:500-8 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 40  |j 2002  |e 5  |b 09  |c 09  |h 500-8