|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM119211718 |
003 |
DE-627 |
005 |
20250203072623.0 |
007 |
tu |
008 |
231222s2002 xx ||||| 00| ||eng c |
028 |
5 |
2 |
|a pubmed25n0398.xml
|
035 |
|
|
|a (DE-627)NLM119211718
|
035 |
|
|
|a (NLM)12046939
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Biryukov, Sergey V
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Fast variation method for elastic strip calculation
|
264 |
|
1 |
|c 2002
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ohne Hilfsmittel zu benutzen
|b n
|2 rdamedia
|
338 |
|
|
|a Band
|b nc
|2 rdacarrier
|
500 |
|
|
|a Date Completed 08.01.2003
|
500 |
|
|
|a Date Revised 16.09.2019
|
500 |
|
|
|a published: Print
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a A new, fast, variation method (FVM) for determining an elastic strip response to stresses arbitrarily distributed on the flat side of the strip is proposed. The remaining surface of the strip may have an arbitrary form, and it is free of stresses. The FVM, as well as the well-known finite element method (FEM), starts with the variational principle. However, it does not use the meshing of the strip. A comparison of FVM results with the exact analytical solution in the special case of shear stresses and a rectangular strip demonstrates an excellent agreement
|
650 |
|
4 |
|a Comparative Study
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on ultrasonics, ferroelectrics, and frequency control
|d 1999
|g 49(2002), 5 vom: 18. Mai, Seite 635-42
|w (DE-627)NLM098181017
|x 0885-3010
|7 nnns
|
773 |
1 |
8 |
|g volume:49
|g year:2002
|g number:5
|g day:18
|g month:05
|g pages:635-42
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_22
|
912 |
|
|
|a GBV_ILN_24
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 49
|j 2002
|e 5
|b 18
|c 05
|h 635-42
|