BiZyme : a novel fusion protein-mediating selection of vaccinia virus recombinants by fluorescence and antibiotic resistance

Recombinant vaccinia virus is a useful and powerful tool for the expression and study of foreign genes. Methods that are currently available for the selection of vaccinia virus recombinants include the restoration of viral plaque-forming phenotype, the replication of viral DNA in the presence of BUd...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:BioTechniques. - 1988. - 32(2002), 5 vom: 04. Mai, Seite 1178, 1180, 1182-7
1. Verfasser: Hansen, Scott G (VerfasserIn)
Weitere Verfasser: Cope, Torrey A, Hruby, Dennis E
Format: Aufsatz
Sprache:English
Veröffentlicht: 2002
Zugriff auf das übergeordnete Werk:BioTechniques
Schlagworte:Journal Article Research Support, U.S. Gov't, P.H.S. Indicators and Reagents Luminescent Proteins Recombinant Fusion Proteins Viral Vaccines Green Fluorescent Proteins 147336-22-9 Chloramphenicol O-Acetyltransferase EC 2.3.1.28 mehr... Kanamycin Kinase EC 2.7.1.95
LEADER 01000naa a22002652 4500
001 NLM118954717
003 DE-627
005 20231222183731.0
007 tu
008 231222s2002 xx ||||| 00| ||eng c
028 5 2 |a pubmed24n0397.xml 
035 |a (DE-627)NLM118954717 
035 |a (NLM)12019792 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Hansen, Scott G  |e verfasserin  |4 aut 
245 1 0 |a BiZyme  |b a novel fusion protein-mediating selection of vaccinia virus recombinants by fluorescence and antibiotic resistance 
264 1 |c 2002 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 20.11.2002 
500 |a Date Revised 10.12.2019 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a Recombinant vaccinia virus is a useful and powerful tool for the expression and study of foreign genes. Methods that are currently available for the selection of vaccinia virus recombinants include the restoration of viral plaque-forming phenotype, the replication of viral DNA in the presence of BUdR or mycophenolic acid, and the maturation and propagation of virus under antibiotic selection. Though effective, each of these methods requires several weeks of concerted effort to isolate, purify, and amplify a potential recombinant virus. Here we report the development of a bifunctional enzyme (BiZyme) to simplify and expedite the isolation and purification of vaccinia virus recombinants. This novel selection marker is composed of an in-frame fusion between the genes encoding gfp and the neomycin phosphotransferase enzyme (neo). Remarkably, expression of the chimeric gfp-neo cassette in the presence of G418 confers both viability and fluorescence to transfected or recombinant virus-infected cells, indicating that both activities are retained within the fusion protein. Therfore, BiZyme was incorporated into a recombination plasmid (pGNR) to enable the concomitant insertion of a foreign gene of interest. Here we demonstrate that this selection/amplification process requires a minimum of 11 days to produce the desired vaccinia virus recombinants. Furthermore, recombinants produced in this fashion have been shown to express both biologically active enzymes and antigenically authenticforeign antigens. In addition to its use in the vaccinia virus vector system, the BiZyme bifunctional selection scheme should be applicable to other eukaryotic and prokaryotic expression systems, simply by coupling it to the appropriate host-specific transcription regulatory signals 
650 4 |a Journal Article 
650 4 |a Research Support, U.S. Gov't, P.H.S. 
650 7 |a Indicators and Reagents  |2 NLM 
650 7 |a Luminescent Proteins  |2 NLM 
650 7 |a Recombinant Fusion Proteins  |2 NLM 
650 7 |a Viral Vaccines  |2 NLM 
650 7 |a Green Fluorescent Proteins  |2 NLM 
650 7 |a 147336-22-9  |2 NLM 
650 7 |a Chloramphenicol O-Acetyltransferase  |2 NLM 
650 7 |a EC 2.3.1.28  |2 NLM 
650 7 |a Kanamycin Kinase  |2 NLM 
650 7 |a EC 2.7.1.95  |2 NLM 
700 1 |a Cope, Torrey A  |e verfasserin  |4 aut 
700 1 |a Hruby, Dennis E  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t BioTechniques  |d 1988  |g 32(2002), 5 vom: 04. Mai, Seite 1178, 1180, 1182-7  |w (DE-627)NLM012627046  |x 1940-9818  |7 nnns 
773 1 8 |g volume:32  |g year:2002  |g number:5  |g day:04  |g month:05  |g pages:1178, 1180, 1182-7 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_21 
912 |a GBV_ILN_22 
912 |a GBV_ILN_39 
912 |a GBV_ILN_40 
912 |a GBV_ILN_50 
912 |a GBV_ILN_60 
912 |a GBV_ILN_62 
912 |a GBV_ILN_65 
912 |a GBV_ILN_70 
912 |a GBV_ILN_99 
912 |a GBV_ILN_121 
912 |a GBV_ILN_130 
912 |a GBV_ILN_227 
912 |a GBV_ILN_350 
912 |a GBV_ILN_618 
912 |a GBV_ILN_640 
912 |a GBV_ILN_754 
912 |a GBV_ILN_2001 
912 |a GBV_ILN_2002 
912 |a GBV_ILN_2003 
912 |a GBV_ILN_2005 
912 |a GBV_ILN_2006 
912 |a GBV_ILN_2007 
912 |a GBV_ILN_2008 
912 |a GBV_ILN_2009 
912 |a GBV_ILN_2010 
912 |a GBV_ILN_2012 
912 |a GBV_ILN_2015 
912 |a GBV_ILN_2018 
912 |a GBV_ILN_2023 
912 |a GBV_ILN_2035 
912 |a GBV_ILN_2040 
912 |a GBV_ILN_2060 
912 |a GBV_ILN_2099 
912 |a GBV_ILN_2105 
912 |a GBV_ILN_2121 
912 |a GBV_ILN_2470 
951 |a AR 
952 |d 32  |j 2002  |e 5  |b 04  |c 05  |h 1178, 1180, 1182-7