Calculation of electronic g-tensors for transition metal complexes using hybrid density functionals and atomic meanfield spin-orbit operators

Copyright 2002 Wiley Periodicals, Inc.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 23(2002), 8 vom: 15. Juni, Seite 794-803
1. Verfasser: Kaupp, Martin (VerfasserIn)
Weitere Verfasser: Reviakine, Roman, Malkina, Olga L, Arbuznikov, Alexei, Schimmelpfennig, Bernd, Malkin, Vladimir G
Format: Aufsatz
Sprache:English
Veröffentlicht: 2002
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Copyright 2002 Wiley Periodicals, Inc.
We report the first implementation of the calculation of electronic g-tensors by density functional methods with hybrid functionals. Spin-orbit coupling is treated by the atomic meanfield approximation. g-Tensors for a set of small main group radicals and for a series of ten 3d and two 4d transition metal complexes have been compared using the local density approximation (VWN functional), the generalized gradient approximation (BP86 functional), as well as B3-type (B3PW91) and BH-type (BHPW91) hybrid functionals. For main group radicals, the effect of exact-exchange mixing is small. In contrast, significant differences between the various functionals arise for transition metal complexes. As has been shown previously, local and in particular gradient-corrected functionals tend to underestimate the "paramagnetic" contributions to the g-tensors in these cases and thereby recover only about 40-50% of the range of experimental g-tensor components. This is improved to ca. 60% by the B3PW91 functional, which also gives slightly reduced standard deviations. The range increases to almost 100% using the half-and-half functional BHPW91. However, the quality of the correlation with experimental data worsens due to a significant overestimate of some intermediate g-tensor values. The worse performance of the BHPW91 functional in these cases is accompanied by spin contamination. Although none of the functionals tested thus appears to be ideal for the treatment of electronic g-tensors in transition metal complexes, the B3PW91 hybrid functional exhibited the overall most satisfactory performance. Apart from the validation of hybrid functionals, some aspects in the treatment of spin-orbit contributions to the g-tensor are discussed
Beschreibung:Date Completed 21.10.2002
Date Revised 03.11.2003
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:1096-987X