Disinfection of wastewater by hydrogen peroxide or peracetic acid : development of procedures for measurement of residual disinfectant and application to a physicochemically treated municipal effluent

The Montreal Urban Community Wastewater Treatment Plant (MUCWTP) located in Montreal. Quebec, Canada, uses physicochemical treatment processes prior to discharging wastewater into the St. Lawrence River via an outfall tunnel of 2 hours retention time. Although chlorination facilities exist, they are...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Water environment research : a research publication of the Water Environment Federation. - 1998. - 74(2002), 1 vom: 26. Jan., Seite 33-50
1. Verfasser: Wagner, Monika (VerfasserIn)
Weitere Verfasser: Brumelis, Daina, Gehr, Ronald
Format: Aufsatz
Sprache:English
Veröffentlicht: 2002
Zugriff auf das übergeordnete Werk:Water environment research : a research publication of the Water Environment Federation
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Benzothiazoles Disinfectants Sulfonic Acids Thiosulfates 2,2'-azino-di-(3-ethylbenzothiazoline)-6-sulfonic acid 28752-68-3 Hydrogen Peroxide BBX060AN9V mehr... Catalase EC 1.11.1.6 sodium thiosulfate HX1032V43M Peracetic Acid I6KPI2E1HD
Beschreibung
Zusammenfassung:The Montreal Urban Community Wastewater Treatment Plant (MUCWTP) located in Montreal. Quebec, Canada, uses physicochemical treatment processes prior to discharging wastewater into the St. Lawrence River via an outfall tunnel of 2 hours retention time. Although chlorination facilities exist, they are not being used, and the MUCWTP is seeking alternative methods for disinfection to achieve a 2- to 3-log fecal coliform reduction. Liquid chemical disinfectants were attractive options because of their low capital costs. This led to an investigation of the feasibility of using hydrogen peroxide or peracetic acid. A method for measuring peroxycompounds (hydrogen peroxide or peracetic acid plus hydrogen peroxide) was developed using the peroxidase-based oxidation of 2,2'-azino-bis(3-ethylbenz-thiazoline-6-sulfuric acid) diammonium salt (ABTS) with hydrogen peroxide. The validity of the method was confirmed using effluent from the MUCWTP. Recovery was higher than 90% for peracetic acid levels as low as 1.0 mg/L. Quenching of hydrogen peroxide was achieved with 50-mg/L catalase; quenching of peracetic acid was achieved with 100 mg/L of sodium thiosulfate, followed by 50 mg/L of catalase. Batch disinfection tests were conducted on MUCWTP effluent. Hydrogen peroxide and peracetic acid in wastewater over time could be modeled as a second-order decay, with the decay "constant" being a function of the initial concentration of peroxycompounds. This function was the same for both hydrogen peroxide and peracetic acid, possibly indicating similar decomposition pathways in wastewater matrices. Disinfection was modeled using a modified Hom equation. Required doses of hydrogen peroxide to reach the target fecal coliform levels ranged from 106 to 285 mg/L, with the higher doses occurring when ferric chloride instead of alum was used as the coagulant. Hence, hydrogen peroxide was infeasible as a disinfectant for this application. On the other hand, the peracetic acid dose needed to achieve the target fecal coliform level was only 0.6 to 1.6 mg/L. Therefore, peracetic acid seems to be a promising disinfectant for physicochemical or primary effluent, or combined sewer overflows
Beschreibung:Date Completed 18.10.2002
Date Revised 22.09.2019
published: Print
Citation Status MEDLINE
ISSN:1554-7531