Transient rheology of a polyethylene melt under shear

Using nonequilibrium molecular dynamics simulation, we have studied the response of a C100 model polymer melt to a step change from equilibrium to a constant, high shear rate flow. The transient shear stress of the model polymer melt exhibits pronounced overshoot at the strain value predicted by the...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics. - 1993. - 60(1999), 6 Pt B vom: 30. Dez., Seite 6956-9
1. Verfasser: Moore, J D (VerfasserIn)
Weitere Verfasser: Cui, S T, Cochran, H D, Cummings, P T
Format: Aufsatz
Sprache:English
Veröffentlicht: 1999
Zugriff auf das übergeordnete Werk:Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Using nonequilibrium molecular dynamics simulation, we have studied the response of a C100 model polymer melt to a step change from equilibrium to a constant, high shear rate flow. The transient shear stress of the model polymer melt exhibits pronounced overshoot at the strain value predicted by the reptation model, in striking similarity to melts of longer, entangled polymer governed by reptation motion. At the maximum of shear stress overshoot, the molecular orientational order and the alignment angle are found to be midway between those characteristic of Newtonian flow and full alignment with the flow. The Doi-Edwards theory is found to be applicable but only by taking into account the shear-rate-dependence of the terminal relaxation time. We further analyze the molecular origins of such behavior in short polymer chains by decomposing the total stress into the contributions from various molecular interactions
Beschreibung:Date Completed 09.08.2002
Date Revised 28.07.2019
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:1063-651X