Resonances and localization of classical waves in random systems with correlated disorder

An original approach to the description of classical wave localization in weakly scattering random media is developed. The approach accounts explicitly for the correlation properties of the disorder, and is based on the idea of spectral filtering. According to this idea, the Fourier space (power spe...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics. - 1993. - 60(1999), 5 Pt B vom: 30. Nov., Seite 6081-90
1. Verfasser: Samelsohn, G (VerfasserIn)
Weitere Verfasser: Gredeskul, S A, Mazar, R
Format: Aufsatz
Sprache:English
Veröffentlicht: 1999
Zugriff auf das übergeordnete Werk:Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM118496514
003 DE-627
005 20250203055234.0
007 tu
008 231222s1999 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n0395.xml 
035 |a (DE-627)NLM118496514 
035 |a (NLM)11970513 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Samelsohn, G  |e verfasserin  |4 aut 
245 1 0 |a Resonances and localization of classical waves in random systems with correlated disorder 
264 1 |c 1999 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 26.08.2002 
500 |a Date Revised 28.07.2019 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a An original approach to the description of classical wave localization in weakly scattering random media is developed. The approach accounts explicitly for the correlation properties of the disorder, and is based on the idea of spectral filtering. According to this idea, the Fourier space (power spectrum) of the scattering potential is divided into two different domains. The first one is related to the global (Bragg) resonances and consists of spectral components lying within a limiting sphere of the Ewald construction. These resonances, arising in the momentum space as a result of a self-averaging, determine the dynamic behavior of the wave in a typical realization. The second domain, consisting of the components lying outside the limiting sphere, is responsible for the effect of local (stochastic) resonances observed in the configuration space. Combining a perturbative path-integral technique with the idea of spectral filtering allows one to eliminate the contribution of local resonances, and to distinguish between possible stochastic and dynamical localization of waves in a given system with arbitrary correlated disorder. In the one-dimensional (1D) case, the result, obtained for the localization length by using such an indirect procedure, coincides exactly with that predicted by a rigorous theory. In higher dimensions, the results, being in agreement with general conclusions of the scaling theory of localization, add important details to the common picture. In particular, the effect of the high-frequency localization length saturation is predicted for 2D systems. Some possible links with the problem of wave transport in periodic or near-periodic systems (photonic crystals) are also discussed 
650 4 |a Journal Article 
700 1 |a Gredeskul, S A  |e verfasserin  |4 aut 
700 1 |a Mazar, R  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics  |d 1993  |g 60(1999), 5 Pt B vom: 30. Nov., Seite 6081-90  |w (DE-627)NLM098226002  |x 1063-651X  |7 nnns 
773 1 8 |g volume:60  |g year:1999  |g number:5 Pt B  |g day:30  |g month:11  |g pages:6081-90 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 60  |j 1999  |e 5 Pt B  |b 30  |c 11  |h 6081-90