|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM118492918 |
003 |
DE-627 |
005 |
20250203055213.0 |
007 |
tu |
008 |
231222s1999 xx ||||| 00| ||eng c |
028 |
5 |
2 |
|a pubmed25n0395.xml
|
035 |
|
|
|a (DE-627)NLM118492918
|
035 |
|
|
|a (NLM)11970153
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Xi, H
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Finite-volume lattice Boltzmann schemes in two and three dimensions
|
264 |
|
1 |
|c 1999
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ohne Hilfsmittel zu benutzen
|b n
|2 rdamedia
|
338 |
|
|
|a Band
|b nc
|2 rdacarrier
|
500 |
|
|
|a Date Completed 12.08.2002
|
500 |
|
|
|a Date Revised 28.07.2019
|
500 |
|
|
|a published: Print
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a Simple and practical finite-volume schemes for the lattice Boltzmann equation are derived in two and three dimensions through the application of modern finite-volume methods. The schemes use a finite-volume vortex-type formulation based on quadrilateral elements in two dimensions and trilinear hexahedral elements in three dimensions. It is shown that the schemes are applicable to domains with irregular boundaries of arbitrary shape in two and three dimensions
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Peng, G
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Chou, S H
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics
|d 1993
|g 60(1999), 3 vom: 30. Sept., Seite 3380-8
|w (DE-627)NLM098226002
|x 1063-651X
|7 nnns
|
773 |
1 |
8 |
|g volume:60
|g year:1999
|g number:3
|g day:30
|g month:09
|g pages:3380-8
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 60
|j 1999
|e 3
|b 30
|c 09
|h 3380-8
|