Nonlinear transfer function encodes synchronization in a neural network from the mammalian brain

Synchronization is one of the mechanisms by which the brain encodes information. The observed synchronization of neuronal activity has, however, several levels of fluctuations, which presumably regulate local features of specific areas. This means that biological neural networks should have an intri...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics. - 1993. - 60(1999), 3 vom: 30. Sept., Seite 3239-43
1. Verfasser: Menendez de la Prida, L (VerfasserIn)
Weitere Verfasser: Sanchez-Andres, J V
Format: Aufsatz
Sprache:English
Veröffentlicht: 1999
Zugriff auf das übergeordnete Werk:Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000caa a22002652 4500
001 NLM118492713
003 DE-627
005 20250203055211.0
007 tu
008 231222s1999 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n0395.xml 
035 |a (DE-627)NLM118492713 
035 |a (NLM)11970133 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Menendez de la Prida, L  |e verfasserin  |4 aut 
245 1 0 |a Nonlinear transfer function encodes synchronization in a neural network from the mammalian brain 
264 1 |c 1999 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 12.08.2002 
500 |a Date Revised 28.07.2019 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a Synchronization is one of the mechanisms by which the brain encodes information. The observed synchronization of neuronal activity has, however, several levels of fluctuations, which presumably regulate local features of specific areas. This means that biological neural networks should have an intrinsic mechanism able to synchronize the neuronal activity but also to preserve the firing capability of individual cells. Here, we investigate the input-output relationship of a biological neural network from developing mammalian brain, i.e., the hippocampus. We show that the probability of occurrence of synchronous output activity (which consists in stereotyped population bursts recorded throughout the hippocampus) is encoded by a sigmoidal transfer function of the input frequency. Under this scope, low-frequency inputs will not produce any coherent output while high-frequency inputs will determine a synchronous pattern of output activity (population bursts). We analyze the effect of the network size (N) on the parameters of the transfer function (threshold and slope). We found that sigmoidal functions realistically simulate the synchronous output activity of hippocampal neural networks. This outcome is particularly important in the application of results from neural network models to neurobiology 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Sanchez-Andres, J V  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics  |d 1993  |g 60(1999), 3 vom: 30. Sept., Seite 3239-43  |w (DE-627)NLM098226002  |x 1063-651X  |7 nnns 
773 1 8 |g volume:60  |g year:1999  |g number:3  |g day:30  |g month:09  |g pages:3239-43 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 60  |j 1999  |e 3  |b 30  |c 09  |h 3239-43