Spheres and prolate and oblate ellipsoids from an analytical solution of the spontaneous-curvature fluid-membrane model

An analytic solution for the Helfrich spontaneous curvature membrane model [H. Naito, M.Okuda, and Ou-Yang Zhong-Can, Phys. Rev. E 48, 2304 (1993); 54, 2816 (1996)], which has the conspicuous feature of representing a circular biconcave shape, is studied. Results show that the solution in fact descr...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics. - 1993. - 60(1999), 3 vom: 30. Sept., Seite 3227-33
1. Verfasser: Liu, Q H (VerfasserIn)
Weitere Verfasser: Haijun, Z, Liu, J X, Zhong-Can, O Y
Format: Aufsatz
Sprache:English
Veröffentlicht: 1999
Zugriff auf das übergeordnete Werk:Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000caa a22002652 4500
001 NLM118492691
003 DE-627
005 20250203055211.0
007 tu
008 231222s1999 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n0395.xml 
035 |a (DE-627)NLM118492691 
035 |a (NLM)11970131 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Liu, Q H  |e verfasserin  |4 aut 
245 1 0 |a Spheres and prolate and oblate ellipsoids from an analytical solution of the spontaneous-curvature fluid-membrane model 
264 1 |c 1999 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 12.08.2002 
500 |a Date Revised 28.07.2019 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a An analytic solution for the Helfrich spontaneous curvature membrane model [H. Naito, M.Okuda, and Ou-Yang Zhong-Can, Phys. Rev. E 48, 2304 (1993); 54, 2816 (1996)], which has the conspicuous feature of representing a circular biconcave shape, is studied. Results show that the solution in fact describes a family of shapes, which can be classified as (i) a flat plane (trivial case), (ii) a sphere, (iii) a prolate ellipsoid, (iv) a capped cylinder, (v) an oblate ellipsoid, (vi) a circular biconcave shape, (vii) a self-intersecting inverted circular biconcave shape, and (viii) a self-intersecting nodoidlike cylinder. Among the closed shapes (ii)-(vii), a circular biconcave shape is the one with a minimum of local curvature energy 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Haijun, Z  |e verfasserin  |4 aut 
700 1 |a Liu, J X  |e verfasserin  |4 aut 
700 1 |a Zhong-Can, O Y  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics  |d 1993  |g 60(1999), 3 vom: 30. Sept., Seite 3227-33  |w (DE-627)NLM098226002  |x 1063-651X  |7 nnns 
773 1 8 |g volume:60  |g year:1999  |g number:3  |g day:30  |g month:09  |g pages:3227-33 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 60  |j 1999  |e 3  |b 30  |c 09  |h 3227-33