Universal equivalence of mean first-passage time and Kramers rate
We prove that for an arbitrary time-homogeneous stochastic process, Kramers's flux-over-population rate is identical to the inverse of the associated mean first-passage time. In this way the mean first-passage time problem can be treated without making use of the adjoint equation in conjunction...
Veröffentlicht in: | Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics. - 1993. - 60(1999), 1 vom: 30. Juli, Seite R1-4 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , |
Format: | Aufsatz |
Sprache: | English |
Veröffentlicht: |
1999
|
Zugriff auf das übergeordnete Werk: | Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics |
Schlagworte: | Journal Article |
Zusammenfassung: | We prove that for an arbitrary time-homogeneous stochastic process, Kramers's flux-over-population rate is identical to the inverse of the associated mean first-passage time. In this way the mean first-passage time problem can be treated without making use of the adjoint equation in conjunction with cumbersome boundary conditions |
---|---|
Beschreibung: | Date Completed 27.08.2002 Date Revised 28.07.2019 published: Print Citation Status PubMed-not-MEDLINE |
ISSN: | 1063-651X |