|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM118489216 |
003 |
DE-627 |
005 |
20250203055151.0 |
007 |
tu |
008 |
231222s1999 xx ||||| 00| ||eng c |
028 |
5 |
2 |
|a pubmed25n0395.xml
|
035 |
|
|
|a (DE-627)NLM118489216
|
035 |
|
|
|a (NLM)11969781
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Hernández-Saldaña, H
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Semi-Poisson statistics and beyond
|
264 |
|
1 |
|c 1999
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ohne Hilfsmittel zu benutzen
|b n
|2 rdamedia
|
338 |
|
|
|a Band
|b nc
|2 rdacarrier
|
500 |
|
|
|a Date Completed 27.08.2002
|
500 |
|
|
|a Date Revised 28.07.2019
|
500 |
|
|
|a published: Print
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a Semi-Poisson statistics are shown to be obtained by removing every other number from a random sequence. Retaining every (r+1)th level we obtain a family of sequences, which we call daisy models. Their statistical properties coincide with those of Bogomolny's nearest-neighbor interaction Coulomb gas if the inverse temperature coincides with the integer r. In particular, the case r=2 reproduces closely the statistics of quasioptimal solutions of the traveling salesman problem
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Flores, J
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Seligman, T H
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics
|d 1993
|g 60(1999), 1 vom: 30. Juli, Seite 449-52
|w (DE-627)NLM098226002
|x 1063-651X
|7 nnns
|
773 |
1 |
8 |
|g volume:60
|g year:1999
|g number:1
|g day:30
|g month:07
|g pages:449-52
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 60
|j 1999
|e 1
|b 30
|c 07
|h 449-52
|