Spectral correlations in systems undergoing a transition from periodicity to disorder

We study the spectral statistics for extended yet finite quasi-one-dimensional systems, which undergo a transition from periodicity to disorder. In particular, we compute the spectral two-point form factor, and the resulting expression depends on the degree of disorder. It interpolates smoothly betw...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics. - 1993. - 59(1999), 6 vom: 30. Juni, Seite 6541-51
1. Verfasser: Dittrich, T (VerfasserIn)
Weitere Verfasser: Mehlig, B, Schanz, H, Smilansky, U, Pollner, P, Vattay, G
Format: Aufsatz
Sprache:English
Veröffentlicht: 1999
Zugriff auf das übergeordnete Werk:Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM118487809
003 DE-627
005 20250203055144.0
007 tu
008 231222s1999 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n0395.xml 
035 |a (DE-627)NLM118487809 
035 |a (NLM)11969640 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Dittrich, T  |e verfasserin  |4 aut 
245 1 0 |a Spectral correlations in systems undergoing a transition from periodicity to disorder 
264 1 |c 1999 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 24.06.2002 
500 |a Date Revised 28.07.2019 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We study the spectral statistics for extended yet finite quasi-one-dimensional systems, which undergo a transition from periodicity to disorder. In particular, we compute the spectral two-point form factor, and the resulting expression depends on the degree of disorder. It interpolates smoothly between the two extreme limits-the approach to Poissonian statistics in the (weakly) disordered case, and the universal expressions derived in T. Dittrich, B. Mehlig, H. Schanz, and U. Smilansky, Chaos Solitons Fractals 8, 1205 (1997); Phys. Rev. E 57, 359 (1998); B. D. Simons and B. L. Altshuler, Phys. Rev. Lett. 70, 4063 (1993); and N. Taniguchi and B. L. Altshuler, ibid. 71, 4031 (1993) for the periodic case. The theoretical results agree very well with the spectral statistics obtained numerically for chains of chaotic billiards and graphs 
650 4 |a Journal Article 
700 1 |a Mehlig, B  |e verfasserin  |4 aut 
700 1 |a Schanz, H  |e verfasserin  |4 aut 
700 1 |a Smilansky, U  |e verfasserin  |4 aut 
700 1 |a Pollner, P  |e verfasserin  |4 aut 
700 1 |a Vattay, G  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics  |d 1993  |g 59(1999), 6 vom: 30. Juni, Seite 6541-51  |w (DE-627)NLM098226002  |x 1063-651X  |7 nnns 
773 1 8 |g volume:59  |g year:1999  |g number:6  |g day:30  |g month:06  |g pages:6541-51 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 59  |j 1999  |e 6  |b 30  |c 06  |h 6541-51