Calculation of relaxation rates from microscopic equations of motion

For classical systems with anharmonic forces, Newton's equations for particle trajectories are nonlinear, while Liouville's equation for the evolution of functions of position and momentum is linear and is solved by constructing a basis of functions in which the Liouvillian is a tridiagona...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics. - 1993. - 59(1999), 5 Pt A vom: 30. Mai, Seite 5292-302
1. Verfasser: Haydock, R (VerfasserIn)
Weitere Verfasser: Nex, C M, Simons, B D
Format: Aufsatz
Sprache:English
Veröffentlicht: 1999
Zugriff auf das übergeordnete Werk:Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM118486292
003 DE-627
005 20250203055135.0
007 tu
008 231222s1999 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n0395.xml 
035 |a (DE-627)NLM118486292 
035 |a (NLM)11969489 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Haydock, R  |e verfasserin  |4 aut 
245 1 0 |a Calculation of relaxation rates from microscopic equations of motion 
264 1 |c 1999 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 10.06.2002 
500 |a Date Revised 28.07.2019 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a For classical systems with anharmonic forces, Newton's equations for particle trajectories are nonlinear, while Liouville's equation for the evolution of functions of position and momentum is linear and is solved by constructing a basis of functions in which the Liouvillian is a tridiagonal matrix, which is then diagonalized. For systems that are chaotic in the sense that neighboring trajectories diverge exponentially, the initial conditions determine the solution to Liouville's equation for short times; but for long times, the solutions decay exponentially at rates independent of the initial conditions. These are the relaxation rates of irreversible processes, and they arise in these calculations as the imaginary parts of the frequencies where there are singularities in the analytic continuations of solutions to Liouville's equation. These rates are calculated for two examples: the inverted oscillator, which can be solved both analytically and numerically, and a charged particle in a periodic magnetic field, which can only be solved numerically. In these systems, dissipation arises from traveling-wave solutions to Liouville's equation that couple low and high wave-number modes allowing energy to flow from disturbances that are coherent over large scales to disturbances on ever smaller scales finally becoming incoherent over microscopic scales. These results suggest that dissipation in large scale motion of the system is a consequence of chaos in the small scale motion 
650 4 |a Journal Article 
700 1 |a Nex, C M  |e verfasserin  |4 aut 
700 1 |a Simons, B D  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics  |d 1993  |g 59(1999), 5 Pt A vom: 30. Mai, Seite 5292-302  |w (DE-627)NLM098226002  |x 1063-651X  |7 nnns 
773 1 8 |g volume:59  |g year:1999  |g number:5 Pt A  |g day:30  |g month:05  |g pages:5292-302 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 59  |j 1999  |e 5 Pt A  |b 30  |c 05  |h 5292-302