Emergence of order in textured patterns

A characterization of textured patterns, referred to as the disorder function delta(beta), is used to study properties of patterns generated in the Swift-Hohenberg equation (SHE). It is shown to be an intensive, configuration-independent measure. The evolution of random initial states under the SHE...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics. - 1993. - 59(1999), 5 Pt A vom: 30. Mai, Seite 5058-64
1. Verfasser: Gunaratne, G H (VerfasserIn)
Weitere Verfasser: Ratnaweera, A, Tennekone, K
Format: Aufsatz
Sprache:English
Veröffentlicht: 1999
Zugriff auf das übergeordnete Werk:Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM118486020
003 DE-627
005 20250203055134.0
007 tu
008 231222s1999 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n0395.xml 
035 |a (DE-627)NLM118486020 
035 |a (NLM)11969462 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Gunaratne, G H  |e verfasserin  |4 aut 
245 1 0 |a Emergence of order in textured patterns 
264 1 |c 1999 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 10.06.2002 
500 |a Date Revised 28.07.2019 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a A characterization of textured patterns, referred to as the disorder function delta(beta), is used to study properties of patterns generated in the Swift-Hohenberg equation (SHE). It is shown to be an intensive, configuration-independent measure. The evolution of random initial states under the SHE exhibits two stages of relaxation. The initial phase, where local striped domains emerge from a noisy background, is quantified by a power-law decay delta(beta) approximately t-(1/2)beta. Beyond a sharp transition, a slower power-law decay of delta(beta), which corresponds to the coarsening of striped domains, is observed. The transition between the phases advances as the system is driven further from the onset of patterns, and suitable scaling of time and delta(beta) leads to the collapse of distinct curves. The decay of delta(beta) during the initial phase remains unchanged when nonvariational terms are added to the underlying equations, suggesting the possibility of observing it in experimental systems. In contrast, the rate of relaxation during domain coarsening increases with the coefficient of the nonvariational term 
650 4 |a Journal Article 
700 1 |a Ratnaweera, A  |e verfasserin  |4 aut 
700 1 |a Tennekone, K  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics  |d 1993  |g 59(1999), 5 Pt A vom: 30. Mai, Seite 5058-64  |w (DE-627)NLM098226002  |x 1063-651X  |7 nnns 
773 1 8 |g volume:59  |g year:1999  |g number:5 Pt A  |g day:30  |g month:05  |g pages:5058-64 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 59  |j 1999  |e 5 Pt A  |b 30  |c 05  |h 5058-64