Application of the frozen atom approximation to the GB/SA continuum model for solvation free energy

The generalized Born/surface area (GB/SA) continuum model for solvation free energy is a fast and accurate alternative to using discrete water molecules in molecular simulations of solvated systems. However, computational studies of large solvated molecular systems such as enzyme-ligand complexes ca...

Description complète

Détails bibliographiques
Publié dans:Journal of computational chemistry. - 1984. - 23(2002), 2 vom: 30. Jan., Seite 214-21
Auteur principal: Guvench, Olgun (Auteur)
Autres auteurs: Weiser, Jörg, Shenkin, Peter, Kolossváry, István, Still, W Clark
Format: Article
Langue:English
Publié: 2002
Accès à la collection:Journal of computational chemistry
Sujets:Journal Article Macromolecular Substances Proteins Water 059QF0KO0R
LEADER 01000caa a22002652 4500
001 NLM118068849
003 DE-627
005 20250203050603.0
007 tu
008 231222s2002 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n0394.xml 
035 |a (DE-627)NLM118068849 
035 |a (NLM)11924735 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Guvench, Olgun  |e verfasserin  |4 aut 
245 1 0 |a Application of the frozen atom approximation to the GB/SA continuum model for solvation free energy 
264 1 |c 2002 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 17.07.2003 
500 |a Date Revised 21.11.2013 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a The generalized Born/surface area (GB/SA) continuum model for solvation free energy is a fast and accurate alternative to using discrete water molecules in molecular simulations of solvated systems. However, computational studies of large solvated molecular systems such as enzyme-ligand complexes can still be computationally expensive even with continuum solvation methods simply because of the large number of atoms in the solute molecules. Because in such systems often only a relatively small portion of the system such as the ligand binding site is under study, it becomes less attractive to calculate energies and derivatives for all atoms in the system. To curtail computation while still maintaining high energetic accuracy, atoms distant from the site of interest are often frozen; that is, their coordinates are made invariant. Such frozen atoms do not require energetic and derivative updates during the course of a simulation. Herein we describe methodology and results for applying the frozen atom approach to both the generalized Born (GB) and the solvent accessible surface area (SASA) parts of the GB/SA continuum model for solvation free energy. For strictly pairwise energetic terms, such as the Coulombic and van-der-Waals energies, contributions from pairs of frozen atoms can be ignored. This leaves energetic differences unaffected for conformations that vary only in the positions of nonfrozen atoms. Due to the nonlocal nature of the GB analytical form, however, excluding such pairs from a GB calculation leads to unacceptable inaccuracies. To apply a frozen-atom scheme to GB calculations, a buffer region within the frozen-atom zone is generated based on a user-definable cutoff distance from the nonfrozen atoms. Certain pairwise interactions between frozen atoms in the buffer region are retained in the GB computation. This allows high accuracy in conformational GB comparisons to be maintained while achieving significant savings in computational time compared to the full (nonfrozen) calculation. A similar approach for using a buffer region of frozen atoms is taken for the SASA calculation. The SASA calculation is local in nature, and thus exact SASA energies are maintained. With a buffer region of 8 A for the frozen-atom cases, excellent agreement in differences in energies for three different conformations of cytochrome P450 with a bound camphor ligand are obtained with respect to the nonfrozen cases. For various minimization protocols, simulations run 2 to 10.5 times faster and memory usage is reduced by a factor of 1.5 to 5. Application of the frozen atom method for GB/SA calculations thus can render computationally tractable biologically and medically important simulations such as those used to study ligand-receptor binding conformations and energies in a solvated environment 
650 4 |a Journal Article 
650 7 |a Macromolecular Substances  |2 NLM 
650 7 |a Proteins  |2 NLM 
650 7 |a Water  |2 NLM 
650 7 |a 059QF0KO0R  |2 NLM 
700 1 |a Weiser, Jörg  |e verfasserin  |4 aut 
700 1 |a Shenkin, Peter  |e verfasserin  |4 aut 
700 1 |a Kolossváry, István  |e verfasserin  |4 aut 
700 1 |a Still, W Clark  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 23(2002), 2 vom: 30. Jan., Seite 214-21  |w (DE-627)NLM098138448  |x 0192-8651  |7 nnns 
773 1 8 |g volume:23  |g year:2002  |g number:2  |g day:30  |g month:01  |g pages:214-21 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 23  |j 2002  |e 2  |b 30  |c 01  |h 214-21